Sets of matrices with given joint numerical range

被引:5
|
作者
Krupnik, Naum [1 ]
Spitkovsky, Ilya M.
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会;
关键词
joint numerical range; unitary similarity; 3X3; MATRICES; BOUNDARY;
D O I
10.1016/j.laa.2006.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following question is addressed: To what extent the n-tuple of m x m Hermitian matrices is determined by its joint numerical range? The cases m = 2, n arbitrary and m = n = 3 are considered in detail. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:569 / 585
页数:17
相关论文
共 50 条
  • [1] The joint numerical range of commuting matrices
    Lau, Pan-Shun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    STUDIA MATHEMATICA, 2022, : 241 - 259
  • [2] Joint product numerical range and geometry of reduced density matrices
    Jianxin Chen
    Cheng Guo
    Zhengfeng Ji
    Yiu-Tung Poon
    Nengkun Yu
    Bei Zeng
    Jie Zhou
    Science China Physics, Mechanics & Astronomy, 2017, 60
  • [3] Joint product numerical range and geometry of reduced density matrices
    Chen, Jianxin
    Guo, Cheng
    Ji, Zhengfeng
    Poon, Yiu-Tung
    Yu, Nengkun
    Zeng, Bei
    Zhou, Jie
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2017, 60 (02)
  • [4] Joint product numerical range and geometry of reduced density matrices
    Jianxin Chen
    Cheng Guo
    Zhengfeng Ji
    Yiu-Tung Poon
    Nengkun Yu
    Bei Zeng
    Jie Zhou
    Science China(Physics,Mechanics & Astronomy), 2017, Mechanics & Astronomy)2017 (02) : 15 - 23
  • [5] Numerical range for random matrices
    Collins, Benoit
    Gawron, Piotr
    Litvak, Alexander E.
    Zyczkowski, Karol
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 516 - 533
  • [6] On the congruence numerical range of matrices
    Aghamollaei, Gholamreza
    International Journal of Applied Mathematics and Statistics, 2011, 22 (SUPPL. 11): : 99 - 104
  • [7] Numerical range and product of matrices
    Alizadeh, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (06) : 1422 - 1425
  • [8] SYMMETRIC NUMERICAL RANGE FOR MATRICES
    SAUNDERS, BD
    SCHNEIDER, H
    NUMERISCHE MATHEMATIK, 1976, 26 (01) : 99 - 105
  • [9] On the congruence numerical range of matrices
    Aghamollaei, Gholamreza
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 22 (S11): : 99 - 104
  • [10] GEOMETRY OF THE NUMERICAL RANGE OF MATRICES
    FIEDLER, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 37 (APR) : 81 - 96