The numerical range of products of normal matrices

被引:1
|
作者
Drury, SW [1 ]
机构
[1] McGill Univ, Dept Math & Stat, W Montreal, PQ H3A 2K6, Canada
关键词
trace class multiplier; Schur multiplier; spectral distance; numerical range; normal matrix;
D O I
10.1016/S0024-3795(98)10224-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper, the author developed a formula for the trace class multiplier norm of a matrix of rank at most 2. In this article, applications of this formula are given. In the main result we suppose that f(1),...,f(n) and g(1),...,g(n) are given sets of complex numbers. A description is given of the union of the numerical ranges of the product FG as F and G run over all nxn normal matrices with the given sets as eigenvalues. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 50 条
  • [21] A definition of numerical range of rectangular matrices
    Chorianopoulos, Ch
    Karanasios, S.
    Psarrakos, P.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (05): : 459 - 475
  • [22] Quaternionic numerical range of complex matrices
    Carvalho, Luis
    Diogo, Cristina
    Mendes, Sergio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 620 : 168 - 181
  • [23] ON THE MAXIMAL NUMERICAL RANGE OF SOME MATRICES
    Hamed, Ali N.
    Spitkovsky, Ilya M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 288 - 303
  • [24] Numerical radii for tensor products of matrices
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10): : 1916 - 1936
  • [25] NUMERICAL RADIUS OF PRODUCTS OF SPECIAL MATRICES
    Alakhrass, Mohammad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03): : 997 - 1006
  • [26] INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES
    Aretaki, Aikaterini
    Maroulas, John
    OPUSCULA MATHEMATICA, 2011, 31 (03) : 303 - 315
  • [27] THE NUMERICAL RANGE OF MATRIX PRODUCTS
    Drury, Stephen
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 307 - 321
  • [28] On numerical ranges of the compressions of normal matrices
    Adam, Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4699 - 4709
  • [29] On polynomial numerical hulls of normal matrices
    Davis, C
    Salemi, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 151 - 161
  • [30] NUMERICAL RANGE OF NORMAL OPERATOR
    BERBERIAN, SK
    DUKE MATHEMATICAL JOURNAL, 1964, 31 (03) : 479 - &