LEFSCHETZ PROPERTIES FOR ARTINIAN GORENSTEIN ALGEBRAS PRESENTED BY QUADRICS

被引:23
|
作者
Gondim, Rodrigo [1 ]
Zappala, Giuseppe
机构
[1] Univ Fed Rural Pernambuco, Av Don Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
关键词
WEAK; HYPERSURFACES;
D O I
10.1090/proc/13822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of Artinian Gorenstein algebras, whose combinatorial structure characterizes the ones presented by quadrics. Under certain hypotheses these algebras have non-unimodal Hilbert vector. In particular we provide families of counterexamples to the conjecture that Artinian Gorenstein algebras presented by quadrics should satisfy the weak Lefschetz property.
引用
收藏
页码:993 / 1003
页数:11
相关论文
共 50 条
  • [31] Hilbert functions of Sn-stable artinian Gorenstein algebras
    Geramita, Anthony V.
    Hoefel, Andrew H.
    Wehlau, David L.
    JOURNAL OF ALGEBRA, 2016, 458 : 53 - 70
  • [32] THE STRONG LEFSCHETZ PROPERTY OF GORENSTEIN ALGEBRAS GENERATED BY RELATIVE INVARIANTS
    Nagaoka, Takahiro
    Wachi, Akihito
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3635 - 3646
  • [33] The strong Lefschetz property for Artinian algebras with non-standard grading
    Harima, Tadahito
    Watanabe, Junzo
    JOURNAL OF ALGEBRA, 2007, 311 (02) : 511 - 537
  • [34] Artinian Gorenstein algebras of embedding dimension four and socle degree three
    Marques, Pedro Macias
    Veliche, Oana
    Weyman, Jerzy
    JOURNAL OF ALGEBRA, 2024, 638 : 788 - 839
  • [35] Cohomological Blowups of Graded Artinian Gorenstein Algebras along Surjective Maps
    Iarrobino, Anthony
    Marques, Pedro Macias
    McDaniel, Chris
    Seceleanu, Alexandra
    Watanabe, Junzo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 5816 - 5886
  • [36] A complex-analytic proof of a criterion for isomorphism of Artinian Gorenstein algebras
    Isaev A.
    Complex Analysis and its Synergies, 1 (1)
  • [37] ISOMORPHISM TYPES OF ARTINIAN GORENSTEIN LOCAL ALGEBRAS OF MULTIPLICITY AT MOST 9
    Casnati, Gianfranco
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) : 2738 - 2761
  • [38] The projective dimension of codimension two algebras presented by quadrics
    Huneke, Craig
    Mantero, Paolo
    McCullough, Jason
    Seceleanu, Alexandra
    JOURNAL OF ALGEBRA, 2013, 393 : 170 - 186
  • [39] Jordan types with small parts for Artinian Gorenstein algebras of codimension three
    Altafi, Nasrin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 646 : 54 - 83
  • [40] A Note on a Conjecture Regarding the Weak Lefschetz Property of a Special Class of Artinian Algebras
    Hassan Haghighi
    Sepideh Tashvighi
    Rahim Zaare-Nahandi
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 1831 - 1838