LEFSCHETZ PROPERTIES FOR ARTINIAN GORENSTEIN ALGEBRAS PRESENTED BY QUADRICS

被引:23
|
作者
Gondim, Rodrigo [1 ]
Zappala, Giuseppe
机构
[1] Univ Fed Rural Pernambuco, Av Don Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
关键词
WEAK; HYPERSURFACES;
D O I
10.1090/proc/13822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of Artinian Gorenstein algebras, whose combinatorial structure characterizes the ones presented by quadrics. Under certain hypotheses these algebras have non-unimodal Hilbert vector. In particular we provide families of counterexamples to the conjecture that Artinian Gorenstein algebras presented by quadrics should satisfy the weak Lefschetz property.
引用
收藏
页码:993 / 1003
页数:11
相关论文
共 50 条
  • [21] A note on Artinian Gorenstein algebras of codimension three
    Harima, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (01) : 45 - 56
  • [22] A NOTE ON ARTINIAN GORENSTEIN ALGEBRAS DEFINED BY MONOMIALS
    BEINTEMA, MB
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (01) : 1 - 3
  • [23] Isomorphism Classes of Certain Artinian Gorenstein Algebras
    Elias, Juan
    Valla, Giuseppe
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (03) : 429 - 448
  • [24] The Jordan type of graded Artinian Gorenstein algebras
    Costa, Barbara
    Gondim, Rodrigo
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [25] The central simple modules of Artinian Gorenstein algebras
    Harima, Tadahito
    Watanabe, Junzo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) : 447 - 463
  • [26] Fast Algorithm for Border Bases of Artinian Gorenstein Algebras
    Mourrain, Bernard
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 333 - 340
  • [27] The structure of Gorenstein-linear resolutions of Artinian algebras
    El Khoury, Sabine
    Kustin, Andrew R.
    JOURNAL OF ALGEBRA, 2016, 453 : 492 - 560
  • [28] Lefschetz properties of Gorenstein graded algebras associated to the Apery set of a numerical semigroup
    Guerrieri, Lorenzo
    ARKIV FOR MATEMATIK, 2019, 57 (01): : 85 - 106
  • [29] The Weak Lefschetz Property of Artinian Algebras Associated to Paths and Cycles
    Nguyen, Hop D.
    Tran, Quang Hoa
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (03) : 523 - 544
  • [30] BETTI NUMBERS FOR CONNECTED SUMS OF GRADED GORENSTEIN ARTINIAN ALGEBRAS
    Altafi, Nasrin
    Di Gennaro, Roberta
    Galetto, Federico
    Grate, Sean
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Seceleanu, Alexandra
    Watanabe, Junzo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (02) : 1055 - 1080