共 19 条
A Note on a Conjecture Regarding the Weak Lefschetz Property of a Special Class of Artinian Algebras
被引:0
|作者:
Hassan Haghighi
Sepideh Tashvighi
Rahim Zaare-Nahandi
机构:
[1] K. N. Toosi University of Technology,Faculty of Mathematics
[2] University of Tehran,School of Mathematics, Statistics and Computer Science
来源:
关键词:
Artinian algebra;
Weak Lefschetz property;
13E10;
13C13;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let R=K[x1,…,xr]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R = K[x_1,\ldots ,x_r]$$\end{document} be the polynomial ring over an infinite field K. For a class of Artinian K-algebras A=R/I\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A = R/I$$\end{document}, where I is a monomial ideal of certain specific form and K has some positive characteristics, we examine the weak Lefschetz property of A for various choices of I. In particular, these results support parts of a conjecture by Migliore, Miró-Roig and Nagel in some positive characteristics, and reveal that another part of their conjecture is characteristic-dependent.
引用
收藏
页码:1831 / 1838
页数:7
相关论文