Unique maximal Betti diagrams for Artinian Gorenstein k-algebras with the weak Lefschetz property

被引:0
|
作者
Richert, Ben [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
关键词
Artinian Gorenstein k-algebras; Graded Betti numbers; Hilbert functions; NUMBERS;
D O I
10.1080/00927872.2023.2301515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternate proof for a theorem of Migliore and Nagel. In particular, we show that if H is an SI-sequence, then the collection of Betti diagrams for all Artinian Gorenstein k-algebras with the weak Lefschetz property and Hilbert function H has a unique largest element.
引用
收藏
页码:2368 / 2385
页数:18
相关论文
共 33 条
  • [1] On the Weak-Lefschetz property for Artinian Gorenstein algebras
    Ragusa A.
    Zappalà G.
    Rendiconti del Circolo Matematico di Palermo, 2013, 62 (2) : 199 - 206
  • [2] The Weak and Strong Lefschetz properties for Artinian K-algebras
    Harima, T
    Migliore, JC
    Nagel, U
    Watanabe, J
    JOURNAL OF ALGEBRA, 2003, 262 (01) : 99 - 126
  • [3] On the Weak Lefschetz Property for artinian Gorenstein algebras of codimension three
    Boij, Mats
    Migliore, Juan
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Zanello, Fabrizio
    JOURNAL OF ALGEBRA, 2014, 403 : 48 - 68
  • [4] The weak Lefschetz property for Artinian Gorenstein algebras of codimension three
    Miro-Roig, Rosa M.
    Quang Hoa Tran
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [5] The finite free extension of Artinian K-algebras with the strong Lefschetz property.
    Harima, T
    Watanabe, J
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2003, 110 : 119 - 146
  • [6] HILBERT FUNCTIONS OF ARTINIAN GORENSTEIN ALGEBRAS WITH THE STRONG LEFSCHETZ PROPERTY
    Altafi, Nasrin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (02) : 499 - 513
  • [7] The Weak Lefschetz Property of Artinian Algebras Associated to Paths and Cycles
    Nguyen, Hop D.
    Tran, Quang Hoa
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (03) : 523 - 544
  • [8] The weak Lefschetz property for Standard graded, Artinian Gorenstein algebras of embedding dimension four and socle degree three
    Kustin, Andrew R.
    JOURNAL OF ALGEBRA, 2024, 650 : 80 - 122
  • [9] LEFSCHETZ PROPERTIES FOR ARTINIAN GORENSTEIN ALGEBRAS PRESENTED BY QUADRICS
    Gondim, Rodrigo
    Zappala, Giuseppe
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 993 - 1003
  • [10] BETTI NUMBERS FOR CONNECTED SUMS OF GRADED GORENSTEIN ARTINIAN ALGEBRAS
    Altafi, Nasrin
    Di Gennaro, Roberta
    Galetto, Federico
    Grate, Sean
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Seceleanu, Alexandra
    Watanabe, Junzo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (02) : 1055 - 1080