New developments in the numerical approximation of the drift-diffusion semiconductor device equation

被引:0
|
作者
Micheletti, S [1 ]
Sacco, R [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this communication we deal with the coupling of the drift-diffusion system with a set of ordinary differential equations describing the kinetics of trapped carriers in a real-life problem arising from state-of-the-art optical communication systems. We propose an efficient block iterative algorithm based on Gauss-Seidel iterations to decouple the kinetic equations from the drift-diffusion equations; these latter are then solved by Krylov subspace iterations. Time advancing employs the backward Euler method and the spatial discretization is carried out by means of Mixed Finite Volumes. The proposed algorithm is applied to the simulation of the dynamics of a CdTe resistor subject to a very high bias.
引用
收藏
页码:469 / 478
页数:4
相关论文
共 50 条
  • [21] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Tomoko Shimada
    Shinji Odanaka
    Journal of Computational Electronics, 2008, 7 : 485 - 493
  • [22] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Shimada, Tomoko
    Odanaka, Shinji
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 485 - 493
  • [23] Asymptotic behavior of the drift-diffusion semiconductor equations
    Guo, XL
    Li, KT
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 385 - 394
  • [24] Holder continuity for a drift-diffusion equation with pressure
    Silvestre, Luis
    Vicol, Vlad
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04): : 637 - 652
  • [25] Global solutions for a supercritical drift-diffusion equation
    Burczak, Jan
    Granero-Belinchon, Rafael
    ADVANCES IN MATHEMATICS, 2016, 295 : 334 - 367
  • [26] Numerical Methods for a Quantum Drift–diffusion Equation in Semiconductor Physics
    Ramón Escobedo
    Luis L. Bonilla
    Journal of Mathematical Chemistry, 2006, 40 : 3 - 13
  • [27] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529
  • [28] Stability of solitary waves in a semiconductor drift-diffusion model
    Cuesta, C. M.
    Schmeiser, C.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (05) : 1423 - 1438
  • [29] Quantum kinetic and drift-diffusion equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 109 - 113
  • [30] Additive decomposition applied to the semiconductor drift-diffusion model
    Brauer, Elizabeth J.
    Turowski, Marek
    McDonough, James M.
    VLSI Design, 1998, 8 (1-4): : 393 - 399