New developments in the numerical approximation of the drift-diffusion semiconductor device equation

被引:0
|
作者
Micheletti, S [1 ]
Sacco, R [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this communication we deal with the coupling of the drift-diffusion system with a set of ordinary differential equations describing the kinetics of trapped carriers in a real-life problem arising from state-of-the-art optical communication systems. We propose an efficient block iterative algorithm based on Gauss-Seidel iterations to decouple the kinetic equations from the drift-diffusion equations; these latter are then solved by Krylov subspace iterations. Time advancing employs the backward Euler method and the spatial discretization is carried out by means of Mixed Finite Volumes. The proposed algorithm is applied to the simulation of the dynamics of a CdTe resistor subject to a very high bias.
引用
收藏
页码:469 / 478
页数:4
相关论文
共 50 条
  • [31] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390
  • [32] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [33] Nonequilibrium drift-diffusion model for organic semiconductor devices
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [34] Fundamental Aspects of Semiconductor Device Modeling Associated With Discrete Impurities: Drift-Diffusion Simulation Scheme
    Sano, Nobuyuki
    Yoshida, Katsuhisa
    Tsukahara, Kohei
    Park, Gyutae
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (08) : 3323 - 3328
  • [35] CONVERGENCE OF A FINITE-ELEMENT METHOD FOR THE DRIFT-DIFFUSION SEMICONDUCTOR-DEVICE EQUATIONS - THE ZERO DIFFUSION CASE
    COCKBURN, B
    TRIANDAF, I
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 383 - 401
  • [36] Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation
    Kurokiba, Masaki
    Ogawa, Takayoshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1052 - 1067
  • [37] NONOSCILLATORY STREAMLINE UPWIND FORMULATIONS FOR DRIFT-DIFFUSION EQUATION
    YIE, H
    TENG, ZM
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1993, 12 (10) : 1535 - 1541
  • [38] Classical localization for the drift-diffusion equation on a Cayley tree
    Bressloff, PC
    Dwyer, VM
    Kearney, MJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19): : 6161 - 6168
  • [39] Implementation of a Numerical Method for Quantum Drift-Diffusion Equations
    Farahbakhsh, M. B.
    Hosseini, S. E.
    Taghizadeh, H.
    2009 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC 2009), 2009, : 481 - +
  • [40] Numerical simulation of a multilane drift-diffusion traffic model
    Cho, HJ
    Shih, HH
    Hwang, NC
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 90 - 95