Chaplygin sleigh with periodically oscillating internal mass

被引:19
|
作者
Bizyaev, Ivan A. [1 ,3 ]
Borisov, Alexey V. [1 ,3 ]
Kuznetsov, Sergey P. [1 ,2 ]
机构
[1] Udmurt State Univ, Univ Skaya 1, Izhevsk 426034, Russia
[2] RAS, Kotelnikovs Inst Radio Engn & Elect, Saratov Branch, Zelenaya 38, Saratov 410019, Russia
[3] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
DYNAMICS; RATTLEBACK;
D O I
10.1209/0295-5075/119/60008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the movement of Chaplygin sleigh on a plane that is a solid body with imposed nonholonomic constraint, which excludes the possibility of motions transversal to the constraint element ("knife-edge"), and complement the model with an attached mass, periodically oscillating relatively to the main platform of the sleigh. Numerical simulations indicate the occurrence of either unrestricted acceleration of the sleigh, or motions with bounded velocities and momenta, depending on parameters. We note the presence of phenomena characteristic to nonholonomic systems with complex dynamics; in particular, attractors occur responsible for chaotic motions. In addition, quasiperiodic regimes take place similar to those observed in conservative nonlinear dynamics. Copyright (C) EPLA, 2017
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Chaplygin sleigh in the quadratic potential field
    Kuznetsov, Sergey P.
    Kruglov, Vyacheslav P.
    Borisov, Alexey V.
    EPL, 2020, 132 (02)
  • [22] On moving Chaplygin sleigh on a convex surface
    Ifraimov, S. V.
    Kuleshov, A. S.
    AUTOMATION AND REMOTE CONTROL, 2013, 74 (08) : 1297 - 1306
  • [23] A Variational Integrator for the Chaplygin–Timoshenko Sleigh
    Zhipeng An
    Shan Gao
    Donghua Shi
    Dmitry V. Zenkov
    Journal of Nonlinear Science, 2020, 30 : 1381 - 1419
  • [24] Discontinuous energy shaping control of the Chaplygin sleigh
    Ferguson, Joel
    Donaire, Alejandro
    Middleton, Richard H.
    IFAC PAPERSONLINE, 2018, 51 (03): : 211 - 216
  • [25] Parametric roll oscillations of a hydrodynamic Chaplygin sleigh
    Loya, Kartik
    Tallapragada, Phanindra
    NONLINEAR DYNAMICS, 2023, 111 (22) : 20699 - 20713
  • [26] Steering a Chaplygin Sleigh Using Periodic Impulses
    Tallapragada, Phanindra
    Fedonyuk, Vitaliy
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [27] Dynamics of the Chaplygin Sleigh on a Horizontal Plane with Friction
    A. Yu. Shamin
    Moscow University Mechanics Bulletin, 2020, 75 : 13 - 20
  • [28] A Variational Integrator for the Chaplygin-Timoshenko Sleigh
    An, Zhipeng
    Gao, Shan
    Shi, Donghua
    Zenkov, Dmitry V.
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1381 - 1419
  • [29] Parametric roll oscillations of a hydrodynamic Chaplygin sleigh
    Kartik Loya
    Phanindra Tallapragada
    Nonlinear Dynamics, 2023, 111 : 20699 - 20713
  • [30] Dynamics of the Chaplygin Sleigh on a Horizontal Plane with Friction
    Shamin, A. Yu.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2020, 75 (01) : 13 - 20