Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions

被引:6
|
作者
Sakar, F. M. [1 ]
Aydogan, M. [2 ]
机构
[1] Dicle Univ, Dept Math, Diyarbakir, Turkey
[2] Isik Univ, Dept Math, Campus Sile, Sile, Turkey
关键词
Starlike functions; Harmonic mapping; Distortion theorem; Growth theorem; Convex combination; Convolution properties; MAPPINGS; CONVEX;
D O I
10.1016/j.amc.2017.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let's take f(z) = h (z) + <(g(z))over bar> which is an univalent sense-preserving harmonic functions in open unit disc D = {z : vertical bar z vertical bar < 1}. If f (z) fulfills vertical bar w(z)vertical bar = |g'(z)/h'(z)vertical bar < m, where 0 <= m < 1, then f(z) is known m-quasiconformal harmonic function in the unit disc (Kalaj, 2010) [8]. This class is represented by S-H(m). The goal of this study is to introduce certain features of the solution for non- linear partial differential equation <(f)over bar>((z) over bar) = w(z)f(z) when vertical bar w(z)vertical bar < m, w(z) (sic) m(2)(b(1)-z)/m(2)-b(1)z, h(z) is an element of S*(A, B). In such case S*(A, B) is known to be the class for Janowski starlike functions. We will investigate growth theorems, distortion theorems, jacobian bounds and coefficient ineqaulities, convex combination and convolution properties for this subclass. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 50 条
  • [41] Subclass of Starlike Functions Associated with a Limacon
    Yunus, Yuzaimi
    Halim, Suzeini Abdul
    Akbarally, Ajab Bai
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [42] COEFFICIENT INEQUALITIES FOR A SUBCLASS OF STARLIKE FUNCTIONS
    BERMAN, RD
    SILVERMAN, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 107 (01) : 197 - 205
  • [43] Coefficient Estimates for a Subclass of Starlike Functions
    Raducanu, Dorina
    MATHEMATICS, 2020, 8 (10)
  • [44] The booth lemniscate starlikeness radius for Janowski starlike functions
    Malik, Somya
    Ali, Rosihan M.
    Ravichandran, V.
    arXiv, 2022,
  • [45] Harmonic spirallike functions and harmonic strongly starlike functions
    Xiu-Shuang Ma
    Saminathan Ponnusamy
    Toshiyuki Sugawa
    Monatshefte für Mathematik, 2022, 199 : 363 - 375
  • [46] Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives
    Verma, Shelly
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 819 - 840
  • [47] The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions
    Somya Malik
    Rosihan M. Ali
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2715 - 2732
  • [48] The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions
    Malik, Somya
    Ali, Rosihan M.
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2715 - 2732
  • [49] Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives
    Shelly Verma
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 819 - 840
  • [50] Some General Families of q-Starlike Functions Associated with the Janowski Functions
    Srivastava, H. M.
    Tahir, Muhammad
    Khan, Bilal
    Ahmad, Qazi Zahoor
    Khan, Nazar
    FILOMAT, 2019, 33 (09) : 2613 - 2626