Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions

被引:6
|
作者
Sakar, F. M. [1 ]
Aydogan, M. [2 ]
机构
[1] Dicle Univ, Dept Math, Diyarbakir, Turkey
[2] Isik Univ, Dept Math, Campus Sile, Sile, Turkey
关键词
Starlike functions; Harmonic mapping; Distortion theorem; Growth theorem; Convex combination; Convolution properties; MAPPINGS; CONVEX;
D O I
10.1016/j.amc.2017.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let's take f(z) = h (z) + <(g(z))over bar> which is an univalent sense-preserving harmonic functions in open unit disc D = {z : vertical bar z vertical bar < 1}. If f (z) fulfills vertical bar w(z)vertical bar = |g'(z)/h'(z)vertical bar < m, where 0 <= m < 1, then f(z) is known m-quasiconformal harmonic function in the unit disc (Kalaj, 2010) [8]. This class is represented by S-H(m). The goal of this study is to introduce certain features of the solution for non- linear partial differential equation <(f)over bar>((z) over bar) = w(z)f(z) when vertical bar w(z)vertical bar < m, w(z) (sic) m(2)(b(1)-z)/m(2)-b(1)z, h(z) is an element of S*(A, B). In such case S*(A, B) is known to be the class for Janowski starlike functions. We will investigate growth theorems, distortion theorems, jacobian bounds and coefficient ineqaulities, convex combination and convolution properties for this subclass. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 50 条
  • [31] A new subclass of starlike functions
    Mahzoon, Hesam
    Kargar, Rahim
    Sokol, Janusz
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2354 - 2365
  • [32] ON THE COEFFICIENTS OF A SUBCLASS OF STARLIKE FUNCTIONS
    GOEL, RM
    MEHROK, BS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (05): : 634 - 647
  • [33] Certain subclass of starlike functions
    Gao, Chun-Yi
    Zhou, Shi-Qiong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 176 - 182
  • [34] Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions
    Rehman, Muhammad Sabil Ur
    Ahmad, Qazi Zahoor
    Srivastava, H. M.
    Khan, Nazar
    Darus, Maslina
    Khan, Bilal
    AIMS MATHEMATICS, 2021, 6 (02): : 1110 - 1125
  • [35] Radius of Limacon starlikeness for Janowski starlike functions
    Kanaga, R.
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [36] ON STARLIKE HARMONIC FUNCTIONS
    Nosrati, S.
    Zireh, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 704 - 711
  • [37] Coefficient inequalities for q-starlike functions associated with the Janowski functions
    Srivastava, H. M.
    Khan, Bilal
    Khan, Nazar
    Ahmad, Qazi Zahoor
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (02) : 407 - 425
  • [38] ON A SUBCLASS OF STARLIKE FUNCTIONS WITH BOUNDED TURNING
    Mocanu, Petru T.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 55 (05): : 375 - 379
  • [39] Some Janowski Type Harmonic q-Starlike Functions Associated with Symmetrical Points
    Arif, Muhammad
    Barkub, Omar
    Srivastava, Hari Mohan
    Abdullah, Saleem
    Khan, Sher Afzal
    MATHEMATICS, 2020, 8 (04)
  • [40] Harmonic spirallike functions and harmonic strongly starlike functions
    Ma, Xiu-Shuang
    Ponnusamy, Saminathan
    Sugawa, Toshiyuki
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 363 - 375