The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions

被引:0
|
作者
Somya Malik
Rosihan M. Ali
V. Ravichandran
机构
[1] National Institute of Technology,Department of Mathematics
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Starlike functions; Janowski starlike functions; Booth lemniscate; Subordination; Radius of starlikeness; 30C80; 30C45; Secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
The function Gα(z)=1+z/(1-αz2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (z)=1+ z/(1-\alpha z^2)$$\end{document},   0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1$$\end{document}, maps the open unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} onto the interior of a domain known as the Booth lemniscate. Associated with this function Gα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha $$\end{document} is the recently introduced class BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} consisting of normalized analytic functions f on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} satisfying the subordination zf′(z)/f(z)≺Gα(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z) \prec G_\alpha (z)$$\end{document}. Of interest is its connection with known classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of functions in the sense g(z)=(1/r)f(rz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=(1/r)f(rz)$$\end{document} belongs to BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} for some r in (0, 1) and all f∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {M}$$\end{document}. We find the largest radius r for different classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, particularly when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is the class of starlike functions of order β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, or the Janowski class of starlike functions. As a primary tool for this purpose, we find the radius of the largest disk contained in Gα(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (\mathbb {D})$$\end{document} and centered at a certain point a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \mathbb {R}$$\end{document}.
引用
收藏
页码:2715 / 2732
页数:17
相关论文
共 50 条
  • [1] The booth lemniscate starlikeness radius for Janowski starlike functions
    Malik, Somya
    Ali, Rosihan M.
    Ravichandran, V.
    arXiv, 2022,
  • [2] The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions
    Malik, Somya
    Ali, Rosihan M.
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2715 - 2732
  • [3] Radius of Limacon starlikeness for Janowski starlike functions
    Kanaga, R.
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [4] On Booth lemniscate and starlike functions
    Kargar, Rahim
    Ebadian, Ali
    Sokol, Janusz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 143 - 154
  • [5] On Booth lemniscate and starlike functions
    Rahim Kargar
    Ali Ebadian
    Janusz Sokół
    Analysis and Mathematical Physics, 2019, 9 : 143 - 154
  • [6] Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate
    Ch, Nak Eun
    Kumar, Sushil
    Kumar, Virendra
    Ravichandran, V
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1380 - 1399
  • [7] Further Results for Starlike Functions Related with Booth Lemniscate
    Kargar, Rahim
    Ebadian, Ali
    Trojnar-Spelina, Lucyna
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1235 - 1238
  • [8] Further Results for Starlike Functions Related with Booth Lemniscate
    Rahim Kargar
    Ali Ebadian
    Lucyna Trojnar-Spelina
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1235 - 1238
  • [9] Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives
    Verma, Shelly
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 819 - 840
  • [10] Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives
    Shelly Verma
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 819 - 840