The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions

被引:0
|
作者
Somya Malik
Rosihan M. Ali
V. Ravichandran
机构
[1] National Institute of Technology,Department of Mathematics
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Starlike functions; Janowski starlike functions; Booth lemniscate; Subordination; Radius of starlikeness; 30C80; 30C45; Secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
The function Gα(z)=1+z/(1-αz2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (z)=1+ z/(1-\alpha z^2)$$\end{document},   0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1$$\end{document}, maps the open unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} onto the interior of a domain known as the Booth lemniscate. Associated with this function Gα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha $$\end{document} is the recently introduced class BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} consisting of normalized analytic functions f on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} satisfying the subordination zf′(z)/f(z)≺Gα(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z) \prec G_\alpha (z)$$\end{document}. Of interest is its connection with known classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of functions in the sense g(z)=(1/r)f(rz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=(1/r)f(rz)$$\end{document} belongs to BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} for some r in (0, 1) and all f∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {M}$$\end{document}. We find the largest radius r for different classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, particularly when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is the class of starlike functions of order β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, or the Janowski class of starlike functions. As a primary tool for this purpose, we find the radius of the largest disk contained in Gα(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (\mathbb {D})$$\end{document} and centered at a certain point a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \mathbb {R}$$\end{document}.
引用
收藏
页码:2715 / 2732
页数:17
相关论文
共 50 条
  • [21] ON BOOTH LEMNISCATE AND HADAMARD PRODUCT OF ANALYTIC FUNCTIONS
    Piejko, Krzysztof
    Sokol, Janusz
    MATHEMATICA SLOVACA, 2015, 65 (06) : 1337 - 1344
  • [22] LEMNISCATE AND EXPONENTIAL STARLIKENESS OF REGULAR COULOMB WAVE FUNCTIONS
    Aktas, Ibrahim
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2020, 57 (03) : 372 - 384
  • [23] The order of starlikeness of the class of uniformly starlike functions
    Wisniowska-Wajnryb, Agnieszka
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (16) : 2083 - 2088
  • [24] On Janowski starlike and convex meromorphic harmonic functions
    J. Dziok
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [25] ORDER OF STARLIKENESS OF ALPHA-STARLIKE FUNCTIONS
    BAJPAI, SK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A491 - A492
  • [26] Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli
    Kumar, S. Sivaprasad
    Kumar, Virendra
    Ravichandran, V.
    Cho, Nak Eun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [27] Quasiconformal Harmonic Mappings Related to Janowski Starlike Functions
    Kahramaner, Yasemin
    Polatoglu, Yasar
    SAINS MALAYSIANA, 2014, 43 (12): : 1961 - 1964
  • [28] Starlike functions associated with exponential function and the lemniscate of Bernoulli
    Khatter, Kanika
    Ravichandran, V.
    Kumar, S. Sivaprasad
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 233 - 253
  • [29] Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli
    S Sivaprasad Kumar
    Virendra Kumar
    V Ravichandran
    Nak Eun Cho
    Journal of Inequalities and Applications, 2013 (1)
  • [30] Starlike functions associated with exponential function and the lemniscate of Bernoulli
    Kanika Khatter
    V. Ravichandran
    S. Sivaprasad Kumar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 233 - 253