MDSIMAID: Automatic parameter optimization in fast electrostatic algorithms

被引:5
|
作者
Crocker, MS
Hampton, SS
Matthey, T
Izaguirre, JA [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Bergen, Parallab, N-5020 Bergen, Norway
[3] Univ Bergen, Bergen Ctr Computat Sci, N-5020 Bergen, Norway
关键词
automatic parameter optimization; fast electrostatic algorithms;
D O I
10.1002/jcc.20240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MDSIMAID is a recommender system that optimizes parallel Particle Mesh Ewald (PME) and both sequential and parallel multigrid (MG) summation fast electrostatic solvers. MDSIMAID optimizes the running time or parallel scalability of these methods within a given error tolerance. MDSIMAID performs a run time constrained search on the parameter space of each method starting from semiempirical performance models. Recommended parameters are presented to the user. MDSIMAID'S optimization of MG leads to configurations that are up to 14 times faster or 17 times more accurate than published recommendations. Optimization of PME can improve its parallel scalability, making it run twice as fast in parallel in our tests. MDSIMAID and its Python source code are accessible through a Web portal located at http://mdsimaid.cse.nd.edu. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [1] Fast genetic algorithms used for PID parameter optimization
    Meng, Xiangzhong
    Song, Baoye
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 2144 - +
  • [2] Multi-parameter optimization of electrostatic micro-generators using design optimization algorithms
    Hoffmann, Daniel
    Folkmer, Bernd
    Manoli, Yiannos
    SMART MATERIALS AND STRUCTURES, 2010, 19 (11)
  • [3] Fast automatic differentiation and its application to flight vehicle parameter optimization
    College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
    Xibei Gongye Daxue Xuebao, 2007, 3 (398-401):
  • [4] Fast algorithms for computing electrostatic geometric sensitivities
    Wang, J
    White, J
    SISPAD '97 - 1997 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 1997, : 121 - 123
  • [5] Automatic Parameter Tuning of Motion Planning Algorithms
    Cano, Jose
    Yang, Yiming
    Bodin, Bruno
    Nagarajan, Vijay
    O'Boyle, Michael
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 8103 - 8109
  • [6] Parameter optimization in FCM clustering algorithms
    Gao, XB
    Li, J
    Xie, WX
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 1457 - 1461
  • [7] An Overview of Evolutionary Algorithms for Parameter Optimization
    Baeck, Thomas
    Schwefel, Hans-Paul
    EVOLUTIONARY COMPUTATION, 1993, 1 (01) : 1 - 23
  • [8] Parameter optimization in automatic transcription of music
    Weihs, C
    Ligges, U
    FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 740 - +
  • [9] Automatic parameter optimization in inspection systems
    Bhatia, P
    AUTOMATIC INSPECTION AND NOVEL INSTRUMENTATION, 1997, 3185 : 42 - 49
  • [10] Parameter Meta-optimization of Metaheuristic Optimization Algorithms
    Neumueller, Christoph
    Wagner, Stefan
    Kronberger, Gabriel
    Affenzeller, Michael
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 367 - 374