On the trapping region of the trajectories of chaotic Lorenz-type system

被引:0
|
作者
Sun Fengyun [1 ]
Zhao Yi [1 ]
机构
[1] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Lyapunov function; Lorenz-type system; boundedness of solution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is shown that all solutions of the chaotic system are contained in a trapping region. For the typical parameters values that the chaotic attractor is bounded is displayed. By constructing a suitable Lyapunov function, we show that for the system parameters in some specified regions, the solutions of the chaotic system are globally bounded. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4347297
引用
收藏
页码:147 / +
页数:2
相关论文
共 50 条
  • [41] On Singular Orbits and Global Exponential Attractive Set of a Lorenz-Type System
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (06):
  • [42] A New Simple Chaotic Lorenz-Type System and Its Digital Realization Using a TFT Touch-Screen Display Embedded System
    Mendez-Ramirez, Rodrigo
    Arellano-Delgado, Adrian
    Cruz-Hernandez, Cesar
    Martinez-Clark, Rigoberto
    COMPLEXITY, 2017,
  • [43] DESIGN AND IMPLEMENTATION OF MULTI-WING BUTTERFLY CHAOTIC ATTRACTORS VIA LORENZ-TYPE SYSTEMS
    Yu, Simin
    Tang, Wallace K. S.
    Lu, Jinhu
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 29 - 41
  • [44] Dynamic boundary crisis in the Lorenz-type map
    Maslennikov, Oleg V.
    Nekorkin, Vladimir I.
    CHAOS, 2013, 23 (02)
  • [45] Creation of a complex butterfly attractor using a novel lorenz-type system
    Elwakil, AS
    Özoguz, S
    Kennedy, MP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (04) : 527 - 530
  • [46] A Lorenz-type attractor in a piecewise-smooth system: Rigorous results
    Belykh, Vladimir N.
    Barabash, Nikita V.
    Belykh, Igor V.
    CHAOS, 2019, 29 (10)
  • [47] Dynamics of a Class of Nonautonomous Lorenz-Type Systems
    Zhang, Xu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (12):
  • [48] On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model
    Sukharev, D. M.
    Koryakin, V. A.
    Kazakov, A. O.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2024, 32 (06): : 816 - 831
  • [49] Topological Entropy of One Type of Nonoriented Lorenz-Type Maps
    Feng, Guo
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [50] The existence of homoclinic orbits in a 4D Lorenz-type hyperchaotic system
    Yuming Chen
    Nonlinear Dynamics, 2017, 87 : 1445 - 1452