On the trapping region of the trajectories of chaotic Lorenz-type system

被引:0
|
作者
Sun Fengyun [1 ]
Zhao Yi [1 ]
机构
[1] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Lyapunov function; Lorenz-type system; boundedness of solution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is shown that all solutions of the chaotic system are contained in a trapping region. For the typical parameters values that the chaotic attractor is bounded is displayed. By constructing a suitable Lyapunov function, we show that for the system parameters in some specified regions, the solutions of the chaotic system are globally bounded. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4347297
引用
收藏
页码:147 / +
页数:2
相关论文
共 50 条
  • [31] Generalized Lorenz-type systems
    Abdelkader, MA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (01) : 1 - 13
  • [32] LORENZ-TYPE CHAOTIC PULSING OF A (NH3)-N-15-LASER
    WU, TQ
    SCHRODER, V
    SAAD, FI
    KLISCHE, W
    WEISS, CO
    INFRARED PHYSICS, 1989, 29 (2-4): : 325 - 330
  • [33] A new hyperchaotic Lorenz-type system: Generation, analysis, and implementation
    Li, Yuxia
    Liu, Xuezhen
    Chen, Guanrong
    Liao, Xiaoxin
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2011, 39 (08) : 865 - 879
  • [34] HOMOCLINIC AND HETEROCLINIC ORBITS AND BIFURCATIONS OF A NEW LORENZ-TYPE SYSTEM
    Li, Xianyi
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2695 - 2712
  • [35] Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs
    Belykh, Vladimir N.
    Barabash, Nikita V.
    Belykh, Igor V.
    CHAOS, 2021, 31 (04)
  • [36] On the topological classification of Lorenz-type attractors
    Klinshpont, N. E.
    SBORNIK MATHEMATICS, 2006, 197 (3-4) : 547 - 593
  • [37] Unstable periodic orbits analysis in the generalized Lorenz-type system
    Dong, Chengwei
    Liu, Huihui
    Li, Hantao
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (07):
  • [38] A MODIFIED GENERALIZED LORENZ-TYPE SYSTEM AND ITS CANONICAL FORM
    Yang, Qigui
    Zhang, Kangming
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (06): : 1931 - 1949
  • [39] EVIDENCE FOR LORENZ-TYPE CHAOS IN A LASER
    WEISS, CO
    BROCK, J
    PHYSICAL REVIEW LETTERS, 1986, 57 (22) : 2804 - 2806
  • [40] The Jacobi Stability of a Lorenz-Type Multistable Hyperchaotic System with a Curve of Equilibria
    Chen, Yuming
    Yin, Zongbin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (05):