On the trapping region of the trajectories of chaotic Lorenz-type system

被引:0
|
作者
Sun Fengyun [1 ]
Zhao Yi [1 ]
机构
[1] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Lyapunov function; Lorenz-type system; boundedness of solution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is shown that all solutions of the chaotic system are contained in a trapping region. For the typical parameters values that the chaotic attractor is bounded is displayed. By constructing a suitable Lyapunov function, we show that for the system parameters in some specified regions, the solutions of the chaotic system are globally bounded. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4347297
引用
收藏
页码:147 / +
页数:2
相关论文
共 50 条
  • [21] Sequence of Routes to Chaos in a Lorenz-Type System
    Yang, Fangyan
    Cao, Yongming
    Chen, Lijuan
    Li, Qingdu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [22] Dynamics of a Lorenz-type multistable hyperchaotic system
    Chen, Yu-Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6480 - 6491
  • [23] Hopf bifurcation analysis in a Lorenz-type system
    Li, Hongwei
    Wang, Miao
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 235 - 240
  • [24] Numerical Simulation of the Lorenz-Type Chaotic System Using Barycentric Lagrange Interpolation Collocation Method
    Li, Jun-Mei
    Wang, Yu-Lan
    Zhang, Wei
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [25] A new Lorenz-type hyperchaotic system with a curve of equilibria
    Chen, Yuming
    Yang, Qigui
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 112 : 40 - 55
  • [26] A heuristic dynamical model of the North Atlantic Oscillation with a Lorenz-type chaotic attractor
    Franco Molteni
    Fred Kucharski
    Climate Dynamics, 2019, 52 : 6173 - 6193
  • [27] Lorenz-type controlled pendulum
    Kunin, I
    Kunin, B
    Chernykh, G
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (3-5) : 433 - 448
  • [28] A heuristic dynamical model of the North Atlantic Oscillation with a Lorenz-type chaotic attractor
    Molteni, Franco
    Kucharski, Fred
    CLIMATE DYNAMICS, 2019, 52 (9-10) : 6173 - 6193
  • [29] A unified Lorenz-type system and its canonical form
    Yang, Qigui
    Chen, Guangrong
    Zhou, Tianshou
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 2855 - 2871
  • [30] THERMODYNAMICS OF LORENZ-TYPE MAPS
    SZEPFALUSY, P
    TEL, T
    VATTAY, G
    PHYSICAL REVIEW A, 1991, 43 (02): : 681 - 692