On the trapping region of the trajectories of chaotic Lorenz-type system

被引:0
|
作者
Sun Fengyun [1 ]
Zhao Yi [1 ]
机构
[1] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Lyapunov function; Lorenz-type system; boundedness of solution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is shown that all solutions of the chaotic system are contained in a trapping region. For the typical parameters values that the chaotic attractor is bounded is displayed. By constructing a suitable Lyapunov function, we show that for the system parameters in some specified regions, the solutions of the chaotic system are globally bounded. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4347297
引用
收藏
页码:147 / +
页数:2
相关论文
共 50 条
  • [1] The chaotic region of Lorenz-type system in the parametric space
    Liao, HH
    Zhou, TS
    Tang, Y
    CHAOS SOLITONS & FRACTALS, 2004, 21 (01) : 185 - 192
  • [2] Chaotic attractors of the conjugate Lorenz-type system
    Yang, Qigui
    Chen, Guanrong
    Huang, Kuifei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 3929 - 3949
  • [3] Hopf bifurcation in the Lorenz-type chaotic system
    Yan, Zhenya
    CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1135 - 1142
  • [4] Hopf Bifurcation of a Controlled Lorenz-Type Chaotic System
    Alam, Zeeshan
    Zou, Xiao-Feng
    Yang, Qi-Gui
    INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 441 - 447
  • [5] Conjugate Lorenz-type chaotic attractors
    Xiong, Xiaohua
    Wang, Junwei
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 923 - 929
  • [6] Bifurcations of Chaotic Attractors in a Piecewise Smooth Lorenz-Type System
    Belykh, V. N.
    Barabash, N. V.
    Belykh, I. V.
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (08) : 1385 - 1393
  • [7] Bifurcations of Chaotic Attractors in a Piecewise Smooth Lorenz-Type System
    V.N. Belykh
    N.V. Barabash
    I.V. Belykh
    Automation and Remote Control, 2020, 81 : 1385 - 1393
  • [8] Qualitative analysis of a new Lorenz-type chaotic system and its simulation
    Zhang, Fuchen
    Li, Kunqiong
    Zhang, Guangyun
    Mu, Chunlai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 31 - 39
  • [9] Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system
    Qiao, Zhiqin
    Li, Xianyi
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2014, 20 (03) : 264 - 283
  • [10] An Economy Can Have a Lorenz-Type Chaotic Attractor
    Yang, Xiao-Song
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (14):