A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing

被引:74
|
作者
Wang, Jiaxin [1 ]
He, Jinmei [1 ]
Ma, Lili [1 ]
Yao, Yali [1 ]
Zhu, Xuedan [1 ]
Peng, Lei [1 ]
Liu, Xiangrong [1 ]
Li, Kanshe [1 ]
Qu, Mengnan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
关键词
Smart electronic textiles; Self-powered haptic sensing; Superhydrophobicity; Triboelectric nanogenerators; Wearable human-machine interfaces; SENSORS;
D O I
10.1016/j.cej.2021.130200
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textile-based triboelectric nanogenerators (t-TENGs) have attracted extensive attention in wearable power source and movement monitoring. However, the electrical output performance and environmental adaptability of t-TENGs in single-electrode mode are still unsatisfactory, which significantly limits their applications. This limitation is especially more pronounced in humid environments. In the present study, a humidity-resistant and stretchable single-electrode t-TENG (abbreviated as PFL@WFCF-TENG) consisting of the porous flexible layer (PFL) and waterproof flexible conductive fabric (WFCF) has been designed to improve the output performance. Considering the three-dimensional structure and excellent superhydrophobicity of PFL and superior conductivity of WFCF, the resultant PFL@WFCF-TENG (2 x 4 cm(2) area) has high outputs (similar to 135 V, similar to 7.5 mu A, 26 mu C/m(2) , 631.5 mW/m(2)) and favorable humidity-resistant (80% RH). Based on these excellent features, the proposed PFL@WFCF-TENG is expected to be applied for intelligent alarming, haptic sensing, and energy harvesting. Moreover, combined with the microelectronic module, a portable and wearable self-powered haptic controller based on the PFL@WFCF-TENG has been designed for various human-machine interface (HMI) scenarios, such as controlling of the lamp, electronic badge, computer application, and humidifier. The PFL@WFCF-TENG proposed in this study not only provides a feasible solution for developing wearable electronic devices with high electrical output even in high-humidity environments but also shows promising applications in a variety of areas, including wearable power supply, portable computer peripherals, intelligent robots and security systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing
    Chen, Baodong
    Tang, Wei
    Wang, Zhong Lin
    Materials Today, 2021, 50 : 224 - 238
  • [42] All-Nanofiber-Based Ultralight Stretchable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Zhao, Shuyu
    Wang, Jiaona
    Du, Xinyu
    Wang, Jing
    Cao, Ran
    Yin, Yingying
    Zhang, Xiuling
    Yuan, Zuqing
    Xing, Yi
    Pui, David Y. H.
    Li, Congju
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (05): : 2326 - 2332
  • [43] A Stretchable Solid Ionic Electrode-Based Triboelectric Nanogenerator for Biomechanical Energy Harvesting and Self-Powered Sensors
    Bo, Xiangkun
    Wang, Lingyun
    Zhao, Hong
    Almardi, Jasim M. M.
    Li, Weilu
    Daoud, Walid A. A.
    SMALL, 2023, 19 (38)
  • [44] Stretchable conductive-ink-based wrinkled triboelectric nanogenerators for mechanical energy harvesting and self-powered signal sensing
    Wu, W.
    Peng, X.
    Xiao, Y.
    Sun, J.
    Li, L.
    Xu, Y.
    Zhang, S.
    Dong, K.
    Wang, L.
    MATERIALS TODAY CHEMISTRY, 2023, 27
  • [45] Polymer Nanofiber based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Electronics
    Mahanty, Biswajit
    Maity, Kuntal
    Sarkar, Subrata
    Mandal, Dipankar
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [46] Self-powered wearable keyboard with fabric based triboelectric nanogenerator
    Jeon, Seung-Bae
    Park, Sang-Jae
    Kim, Weon-Guk
    Tcho, Il-Woong
    Jin, Ik-Kyeong
    Han, Joon-Kyu
    Kim, Daewon
    Choi, Yang-Kyu
    NANO ENERGY, 2018, 53 : 596 - 603
  • [47] A Ring-Type Triboelectric Nanogenerator for Rotational Mechanical Energy Harvesting and Self-Powered Rotational Speed Sensing
    Xin, Yida
    Du, Taili
    Liu, Changhong
    Hu, Zhiyuan
    Sun, Peiting
    Xu, Minyi
    MICROMACHINES, 2022, 13 (04)
  • [48] Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing
    Wang, Jie
    Qian, Shuo
    Yu, Junbin
    Zhang, Qiang
    Yuan, Zhongyun
    Sang, Shengbo
    Zhou, Xiaohong
    Sun, Lining
    NANOMATERIALS, 2019, 9 (09)
  • [49] Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator
    Xu, Liangquan
    Xuan, Weipeng
    Chen, Jinkai
    Zhang, Chi
    Tang, Yuzhi
    Huang, Xiwei
    Li, Wenjun
    Jin, Hao
    Dong, Shurong
    Yin, Wuliang
    Fu, Yongqing
    Luo, Jikui
    NANO ENERGY, 2021, 83
  • [50] Structurally engineered textile-based triboelectric nanogenerator for energy harvesting application
    Somkuwar, Viraj Uttamrao
    Pragya, Akanksha
    Kumar, Bipin
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (12) : 5177 - 5189