A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing

被引:74
|
作者
Wang, Jiaxin [1 ]
He, Jinmei [1 ]
Ma, Lili [1 ]
Yao, Yali [1 ]
Zhu, Xuedan [1 ]
Peng, Lei [1 ]
Liu, Xiangrong [1 ]
Li, Kanshe [1 ]
Qu, Mengnan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
关键词
Smart electronic textiles; Self-powered haptic sensing; Superhydrophobicity; Triboelectric nanogenerators; Wearable human-machine interfaces; SENSORS;
D O I
10.1016/j.cej.2021.130200
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textile-based triboelectric nanogenerators (t-TENGs) have attracted extensive attention in wearable power source and movement monitoring. However, the electrical output performance and environmental adaptability of t-TENGs in single-electrode mode are still unsatisfactory, which significantly limits their applications. This limitation is especially more pronounced in humid environments. In the present study, a humidity-resistant and stretchable single-electrode t-TENG (abbreviated as PFL@WFCF-TENG) consisting of the porous flexible layer (PFL) and waterproof flexible conductive fabric (WFCF) has been designed to improve the output performance. Considering the three-dimensional structure and excellent superhydrophobicity of PFL and superior conductivity of WFCF, the resultant PFL@WFCF-TENG (2 x 4 cm(2) area) has high outputs (similar to 135 V, similar to 7.5 mu A, 26 mu C/m(2) , 631.5 mW/m(2)) and favorable humidity-resistant (80% RH). Based on these excellent features, the proposed PFL@WFCF-TENG is expected to be applied for intelligent alarming, haptic sensing, and energy harvesting. Moreover, combined with the microelectronic module, a portable and wearable self-powered haptic controller based on the PFL@WFCF-TENG has been designed for various human-machine interface (HMI) scenarios, such as controlling of the lamp, electronic badge, computer application, and humidifier. The PFL@WFCF-TENG proposed in this study not only provides a feasible solution for developing wearable electronic devices with high electrical output even in high-humidity environments but also shows promising applications in a variety of areas, including wearable power supply, portable computer peripherals, intelligent robots and security systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A triboelectric nanogenerator for mechanical energy harvesting and as self-powered pressure sensor
    Ding, Zhuyu
    Zou, Ming
    Yao, Peng
    Fan, Li
    MICROELECTRONIC ENGINEERING, 2022, 257
  • [22] Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
    Zhao, Gengrui
    Zhang, Yawen
    Shi, Nan
    Liu, Zhirong
    Zhang, Xiaodi
    Wu, Mengqi
    Pan, Caofeng
    Liu, Hongliang
    Li, Linlin
    Wang, Zhong Lin
    NANO ENERGY, 2019, 59 : 302 - 310
  • [23] Multifunctional Textile for Energy Harvesting and Self-Powered Sensing Applications
    Jao, Y. -T.
    Chang, T. -W.
    Lin, Z. -H.
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE 4, 2017, 77 (07): : 47 - 50
  • [24] A Flexible Triboelectric Nanogenerator for Bio-Mechanical Energy Harvesting and Basketball Self-Powered Sensing
    Xu, Dasheng
    NANO, 2023, 18 (10)
  • [25] Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
    Wang, Xiaofeng
    Yin, Yajiang
    Yi, Fang
    Dai, Keren
    Niu, Simiao
    Han, Yingzhou
    Zhang, Yue
    You, Zheng
    NANO ENERGY, 2017, 39 : 429 - 436
  • [26] Humidity-resistant, breathable, waterproof, and bionic triboelectric electronic skins for self-powered haptic sensing and human motion recognition
    Liu, Xia
    Wang, Yulong
    Wang, Wei
    Cheng, Meifei
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [27] Flexible, durable, green thermoelectric composite fabrics for textile-based wearable energy harvesting and self-powered sensing
    Liu, Siqi
    Zhang, Mingxia
    Kong, Junhua
    Li, Hui
    He, Chaobin
    COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 243
  • [28] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    Carbohydrate Polymers, 2022, 291
  • [29] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291
  • [30] A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    He, Xu
    Zi, Yunlong
    Guo, Hengyu
    Zheng, Haiwu
    Xi, Yi
    Wu, Changsheng
    Wang, Jie
    Zhang, Wei
    Lu, Canhui
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)