A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing

被引:74
|
作者
Wang, Jiaxin [1 ]
He, Jinmei [1 ]
Ma, Lili [1 ]
Yao, Yali [1 ]
Zhu, Xuedan [1 ]
Peng, Lei [1 ]
Liu, Xiangrong [1 ]
Li, Kanshe [1 ]
Qu, Mengnan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
关键词
Smart electronic textiles; Self-powered haptic sensing; Superhydrophobicity; Triboelectric nanogenerators; Wearable human-machine interfaces; SENSORS;
D O I
10.1016/j.cej.2021.130200
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textile-based triboelectric nanogenerators (t-TENGs) have attracted extensive attention in wearable power source and movement monitoring. However, the electrical output performance and environmental adaptability of t-TENGs in single-electrode mode are still unsatisfactory, which significantly limits their applications. This limitation is especially more pronounced in humid environments. In the present study, a humidity-resistant and stretchable single-electrode t-TENG (abbreviated as PFL@WFCF-TENG) consisting of the porous flexible layer (PFL) and waterproof flexible conductive fabric (WFCF) has been designed to improve the output performance. Considering the three-dimensional structure and excellent superhydrophobicity of PFL and superior conductivity of WFCF, the resultant PFL@WFCF-TENG (2 x 4 cm(2) area) has high outputs (similar to 135 V, similar to 7.5 mu A, 26 mu C/m(2) , 631.5 mW/m(2)) and favorable humidity-resistant (80% RH). Based on these excellent features, the proposed PFL@WFCF-TENG is expected to be applied for intelligent alarming, haptic sensing, and energy harvesting. Moreover, combined with the microelectronic module, a portable and wearable self-powered haptic controller based on the PFL@WFCF-TENG has been designed for various human-machine interface (HMI) scenarios, such as controlling of the lamp, electronic badge, computer application, and humidifier. The PFL@WFCF-TENG proposed in this study not only provides a feasible solution for developing wearable electronic devices with high electrical output even in high-humidity environments but also shows promising applications in a variety of areas, including wearable power supply, portable computer peripherals, intelligent robots and security systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Influence of the Fabric Topology on the Performance of a Textile-Based Triboelectric Nanogenerator for Self-Powered Monitoring
    Somkuwar, Viraj U.
    Kumar, Bipin
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (04) : 2323 - 2335
  • [32] A STRETCHABLE TRIBOELECTRIC NANOGENERATOR BASED ON MOLYBDENUM DISULFIDE FOR WEARABLE SELF-POWERED BIOMOTION MONITORING
    Kim, HongSeok
    Rana, S. M. Sohel
    Faruk, Omar
    Islam, M. Robiul
    Park, Jae Y.
    2023 22ND INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS, POWERMEMS 2023, 2023, : 15 - 18
  • [33] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [34] Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile
    Sim, Hyeon Jun
    Choi, Changsoon
    Kim, Shi Hyeong
    Kim, Kang Min
    Lee, Chang Jun
    Kim, Youn Tae
    Lepro, Xavier
    Baughman, Ray H.
    Kim, Seon Jeong
    SCIENTIFIC REPORTS, 2016, 6
  • [35] Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile
    Hyeon Jun Sim
    Changsoon Choi
    Shi Hyeong Kim
    Kang Min Kim
    Chang Jun Lee
    Youn Tae Kim
    Xavier Lepró
    Ray H. Baughman
    Seon Jeong Kim
    Scientific Reports, 6
  • [36] Kirigami-Based Flexible, High-Performance Piezoelectric/Triboelectric Hybrid Nanogenerator for Mechanical Energy Harvesting and Multifunctional Self-Powered Sensing
    Peng, Yongwei
    Li, Yongkang
    Yu, Wei
    ENERGY TECHNOLOGY, 2022, 10 (08)
  • [37] A Triboelectric Nanogenerator Based on Bamboo Leaf for Biomechanical Energy Harvesting and Self-Powered Touch Sensing
    Xu, Zhantang
    Chang, Yasheng
    Zhu, Zhiyuan
    ELECTRONICS, 2024, 13 (04)
  • [38] Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing
    Luo, Chen
    Ma, Hongzhi
    Yu, Hua
    Zhang, Yuhao
    Shao, Yan
    Yin, Bo
    Ke, Kai
    Zhou, Ling
    Zhang, Kai
    Yang, Ming-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9424 - 9432
  • [39] A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing
    Chen, Fangqi
    Wu, Yonghui
    Ding, Zhenyu
    Xia, Xin
    Li, Shaoheng
    Zheng, Haiwu
    Diao, Chunli
    Yue, Gentian
    Zi, Yunlong
    NANO ENERGY, 2019, 56 : 241 - 251
  • [40] Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing
    Chen, Baodong
    Tang, Wei
    Wang, Zhong Lin
    MATERIALS TODAY, 2021, 50 : 224 - 238