Dynamic critical exponent of three-dimensional XY model

被引:3
|
作者
Kim, BJ [1 ]
Jensen, LM [1 ]
Minnhagen, P [1 ]
机构
[1] Umea Univ, Dept Theoret Phys, S-90187 Umea, Sweden
来源
PHYSICA B | 2000年 / 284卷
关键词
scaling relations; short-time relaxation; XY model;
D O I
10.1016/S0921-4526(99)01981-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The dynamic critical behaviors are determined for the three-dimensional XY model with resistively shunted junction (RSJ) dynamics and time dependent Ginzburg-Landau (TDGL) dynamics. A short-time relaxation method is employed and turned into a standard finite-size scaling from which a precise determination of the critical temperature as well as the dynamic critical exponent can be made. The RSJ and TDGL dynamics are shown to have different dynamic critical behaviors. Comparisons with earlier works are made and discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [31] Vortex lines in the three-dimensional XY model with random phase shifts
    Li, MS
    Nattermann, T
    Rieger, H
    Schwartz, M
    PHYSICAL REVIEW B, 1996, 54 (22) : 16024 - 16031
  • [33] Anisotropic three-dimensional XY model and vortex-loop scaling
    Shenoy, S. R.
    Chattopadhyay, B.
    Physical Review B: Condensed Matter, 51 (14):
  • [34] Onsager reaction field theory for the three-dimensional anisotropic XY model
    Gouvea, ME
    Pires, AST
    Wysin, GM
    PHYSICAL REVIEW B, 1998, 58 (05): : 2399 - 2402
  • [35] Positive specific-heat critical exponent of a three-dimensional three-state random-bond Potts model
    Xiong, Wanjie
    Zhong, Fan
    Fan, Shuangli
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (06) : 1162 - 1171
  • [36] The role of vortices in the three-dimensional random-field xy model
    Garanin, D. A.
    Chudnovsky, E. M.
    Proctor, T.
    EPL, 2013, 103 (06)
  • [37] Dynamic three-dimensional model of the coronary circulation
    Lehman, GC
    Gobbi, DG
    Dick, AJ
    Starreveld, Y
    Quantz, M
    Holdsworth, DW
    Drangova, M
    MEDICAL IMAGING 2001: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 2001, 4321 : 288 - 297
  • [38] Dynamic model of three-dimensional cluster formation
    A. V. Mozhaev
    ω. Yu. Buchin
    A. V. Prokaznikov
    Technical Physics Letters, 2008, 34
  • [39] A three-dimensional dynamic kinetic model of the plasmasphere
    Pierrard, V.
    Stegen, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A10)
  • [40] Dynamic model of three-dimensional cluster formation
    Mozhaev, A. V.
    Buchin, E. Yu.
    Prokaznikov, A. V.
    TECHNICAL PHYSICS LETTERS, 2008, 34 (05) : 431 - 434