Chaotic dynamics in classical nuclear billiards

被引:2
|
作者
Bordeianu, C. C. [1 ]
Felea, D. [2 ]
Besliu, C. [1 ]
Jipa, Al. [1 ]
Grossu, I. V. [1 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
[2] Inst Space Sci, Lab Space Res, Bucharest 077125, Romania
关键词
Lyapunov exponent; Kolmogorov-Sinai entropy; Power spectrum; Autocorrelation; Phase portrait; Chaotic behavior; Nuclear billiard; LYAPUNOV EXPONENT; TEMPERATURES; SYSTEMS; SPECTRA; MODEL;
D O I
10.1016/j.cnsns.2010.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several noninteracting nucleons moving in a 2D Woods-Saxon type potential well and hitting the vibrating surface. The Hamiltonian has a coupling term between the particle motion and the collective coordinate which generates a self-consistent dynamics. The numerical simulation is based on the solutions of the Hamilton equations which was solved using an algorithm of Runge-Kutta type (order 4-5) having an optimized step size, taking into account that the absolute error for each variable is less than 10(-6). Total energy is conserved with high accuracy, i.e., approx. 10(-6) in absolute value. We analyze the chaotic behavior of the nonlinear dynamics system using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. A qualitative and quantitative picture of the achievement of soft chaos is shown for a comparative study between the adiabatic and the resonance stage of nuclear interaction. We consider that the onset of chaos would be linked to the resonance stage of interaction. This assumption is argued in [1]. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:324 / 340
页数:17
相关论文
共 50 条
  • [41] Understanding quantum scattering properties in terms of purely classical dynamics:: Two-dimensional open chaotic billiards -: art. no. 046207
    Méndez-Bermúdez, JA
    Luna-Acosta, GA
    Seba, P
    Pichugin, KN
    PHYSICAL REVIEW E, 2002, 66 (04) : 8
  • [42] Regular and chaotic motions in nuclear dynamics
    Canetta, E
    Maino, G
    PHYSICS LETTERS B, 2000, 483 (1-3) : 55 - 59
  • [43] CLASSICAL BILLIARDS IN A ROTATING BOUNDARY
    FAIRLIE, DB
    SIEGWART, DK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05): : 1157 - 1165
  • [44] Classical billiards and quantum fluids
    Araujo Lima, T.
    de Aguiar, F. M.
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [45] Classical motion in isospectral billiards
    Thain, A
    EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (05) : 633 - 643
  • [46] CODING CHAOTIC BILLIARDS .2. COMPACT BILLIARDS DEFINED ON THE PSEUDOSPHERE
    ULLMO, D
    GIANNONI, MJ
    PHYSICA D, 1995, 84 (3-4): : 329 - 356
  • [47] Chaotic and ergodic properties of cylindric billiards
    Bálint, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1127 - 1156
  • [48] Anomalous entanglement in chaotic Dirac billiards
    Ramos, J. G. G. S.
    da Silva, I. M. L.
    Barbosa, A. L. R.
    PHYSICAL REVIEW B, 2014, 90 (24)
  • [49] Geometric magnetism in massive chaotic billiards
    Berry, MV
    Sinclair, EC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2853 - 2861
  • [50] Chaotic properties of the truncated elliptical billiards
    Lopac, V.
    Simic, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 309 - 323