Chaotic dynamics in classical nuclear billiards

被引:2
|
作者
Bordeianu, C. C. [1 ]
Felea, D. [2 ]
Besliu, C. [1 ]
Jipa, Al. [1 ]
Grossu, I. V. [1 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
[2] Inst Space Sci, Lab Space Res, Bucharest 077125, Romania
关键词
Lyapunov exponent; Kolmogorov-Sinai entropy; Power spectrum; Autocorrelation; Phase portrait; Chaotic behavior; Nuclear billiard; LYAPUNOV EXPONENT; TEMPERATURES; SYSTEMS; SPECTRA; MODEL;
D O I
10.1016/j.cnsns.2010.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several noninteracting nucleons moving in a 2D Woods-Saxon type potential well and hitting the vibrating surface. The Hamiltonian has a coupling term between the particle motion and the collective coordinate which generates a self-consistent dynamics. The numerical simulation is based on the solutions of the Hamilton equations which was solved using an algorithm of Runge-Kutta type (order 4-5) having an optimized step size, taking into account that the absolute error for each variable is less than 10(-6). Total energy is conserved with high accuracy, i.e., approx. 10(-6) in absolute value. We analyze the chaotic behavior of the nonlinear dynamics system using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. A qualitative and quantitative picture of the achievement of soft chaos is shown for a comparative study between the adiabatic and the resonance stage of nuclear interaction. We consider that the onset of chaos would be linked to the resonance stage of interaction. This assumption is argued in [1]. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:324 / 340
页数:17
相关论文
共 50 条
  • [31] The quantum mechanics of chaotic billiards
    Casati, G
    Prosen, T
    PHYSICA D, 1999, 131 (1-4): : 293 - 310
  • [32] CHAOTIC BILLIARDS WITH NEUTRAL BOUNDARIES
    VEGA, JL
    UZER, T
    FORD, J
    PHYSICAL REVIEW E, 1993, 48 (05): : 3414 - 3420
  • [33] Diffusion and localization in chaotic billiards
    Borgonovi, F
    Casati, G
    Li, BW
    PHYSICAL REVIEW LETTERS, 1996, 77 (23) : 4744 - 4747
  • [34] Quantum stress in chaotic billiards
    Berggren, Karl-Fredrik
    Maksimov, Dmitrii N.
    Sadreev, Almas F.
    Hoehmann, Ruven
    Kuhl, Ulrich
    Stoeckmann, Hans-Joergen
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [35] MICROWAVE EXPERIMENTS ON CHAOTIC BILLIARDS
    SRIDHAR, S
    HOGENBOOM, DO
    WILLEMSEN, BA
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (1-2) : 239 - 258
  • [36] Chaotic n-dimensional euclidean and hyperbolic open billiards and chaotic spinning planar billiards
    Deniz, Ali
    Kennedy, Judy
    Kocak, Sahin
    Ratiu, Andrei V.
    Ustun, Cevat
    Yorke, James A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02): : 421 - 436
  • [37] FINGERPRINTS OF CLASSICAL CHAOTIC DYNAMICS IN QUANTUM BEHAVIOR
    Micluta-Campeanu, S.
    Raportaru, M. C.
    Nicolin, A. I.
    Baran, V.
    ROMANIAN REPORTS IN PHYSICS, 2018, 70 (01)
  • [38] Chaotic dynamics in classical lattice field theories
    Biro, TS
    Fulop, A
    Gong, C
    Matinyan, S
    Muller, B
    Trayanov, A
    THEORY OF SPIN LATTICES AND LATTICE GAUGE MODELS, 1997, 494 : 164 - 176
  • [39] CHAOTIC SCATTERING IN CLASSICAL TRIATOMIC MOLECULAR DYNAMICS
    Bruhn, B.
    Koch, B. P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (04): : 999 - 1012
  • [40] CHAOTIC DYNAMICS OF 2 COUPLED CLASSICAL SPINS
    REZENDE, SM
    DEAGUIAR, FM
    PHYSICS LETTERS A, 1995, 208 (4-6) : 286 - 292