Classical billiards and quantum fluids

被引:4
|
作者
Araujo Lima, T. [1 ]
de Aguiar, F. M. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
关键词
CHAOTIC BEHAVIOR; TRANSITION; EIGENFUNCTIONS; UNIVERSALITY; SCARS; SOUND;
D O I
10.1103/PhysRevE.91.012923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of a particle confined in the elliptical stadium billiard with rectangular thickness 2t, major axis 2a, and minor axis 2b = 2 is numerically investigated in a reduced phase space with discrete time n. Both relative measure r(n), with asymptotic value r(n -> infinity) = r(infinity) and Shannon entropy s, are calculated in the vicinity of a particular line in the a x t parameter space, namely t(c) = t(0)(a) = root a(2) - 1, with a is an element of (1, root 4/3). If t < t(c), the billiard is known to exhibit a mixed phase space (regular and chaotic regions). As the line t(c) is crossed upwards by increasing t with fixed a, we observe that the function psi(t) = root 1 - r(infinity)(t) critically vanishes at t = t(c). In addition, we show that the function c(t) = t (ds/dt) displays a pronounced peak at t = t(c). In the vicinity of tc (t < t(c)), a chi-square tolerance of 1.0 x 10(-9) is reached when the numerically calculated functions psi(t) and c(t) are fitted with renormalization group formulas with fixed parameters alpha = -0.0127, beta = 0.34, and Delta = 0.5. The results bear a remarkable resemblance to the famous lambda transition in liquid He-4, where the two-component (superfluid and normal fluid) phase of He-II is critically separated from the fully entropic normal-fluid phase of He-I by the so-called lambda line in the pressure x temperature parameter space. The analogy adds support to a set of previous results by Markarian and coworkers, which indicate that the line t(0)(a) is a strong candidate for the bound for chaos in the elliptical stadium billiard if a is an element of (1, root 4/3).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Classical and quantum-wedge billiards
    Liboff, RL
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 305 - 308
  • [2] Classical and quantum confocal parabolic billiards
    Villarreal-Zepeda, Barbara K.
    Iga-Buitron, Hector M.
    Gutierrez-Vega, Julio C.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2021, 89 (12) : 1113 - 1122
  • [3] Symposium on classical and quantum billiards - Preface
    Choquard, P
    Cibils, M
    Szasz, D
    Kramli, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 1 - 2
  • [4] Probability distributions in classical and quantum elliptic billiards
    Gutiérrez-Vega, JC
    Chávez-Cerda, S
    Rodríguez-Dagnino, RM
    [J]. REVISTA MEXICANA DE FISICA, 2001, 47 (05) : 480 - 488
  • [5] Classical and quantum dynamics in an array of electron billiards
    Brunner, Roland
    Meisels, Ronald
    Kuchar, Friedemar
    Akis, Richard
    Ferry, David K.
    Bird, Jonathan P.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1315 - 1318
  • [6] Conductance of open quantum billiards and classical trajectories
    Nazmitdinov, RG
    Pichugin, KN
    Rotter, I
    Seba, P
    [J]. PHYSICAL REVIEW B, 2002, 66 (08) : 853221 - 8532213
  • [7] Quantum-classical correspondence in polygonal billiards
    Wiersig, J
    [J]. PHYSICAL REVIEW E, 2001, 64 (02): : 8
  • [8] Directed transport in classical and quantum chaotic billiards
    Acevedo, W.
    Dittrich, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (04)
  • [9] Quantum transport and classical dynamics in open billiards
    Ishio, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 203 - 214
  • [10] CLASSICAL LIMITE OF THE QUANTUM-MECHANICS - PROBLEM OF QUANTUM BILLIARDS
    MISHNYOV, OG
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1982, 25 (05): : 98 - 100