GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY

被引:3
|
作者
Basu, Samik [1 ]
Sagave, Steffen [2 ]
Schlichtkrull, Christian [3 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Math & Computat Sci, Kolkata 700032, India
[2] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
关键词
Thom spectrum; structured ring spectrum; topological Hochschild homology; CLASSIFYING-SPACES; DIAGRAM SPACES; COHOMOLOGY; UNITS;
D O I
10.1017/S1474748017000421
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of R-module Thom spectra for a commutative symmetric ring spectrum R and we analyze their multiplicative properties. As an interesting source of examples, we show that R-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on R. We apply the general theory to obtain a description of the R-based topological Hochschild homology associated to an R-algebra Thom spectrum.
引用
收藏
页码:21 / 64
页数:44
相关论文
共 50 条
  • [31] A NOTE ON THE HOCHSCHILD HOMOLOGY AND CYCLIC HOMOLOGY OF A TOPOLOGICAL ALGEBRA
    HUBL, R
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 77 (01) : 63 - 70
  • [32] Extension DGAs and topological Hochschild homology
    Bayindir, Haldun Ozgur
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (02): : 895 - 932
  • [33] Topological Hochschild homology and the condition of Hochschild-Kostant-Rosenberg
    Larsen, M
    Lindenstrauss, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1627 - 1638
  • [34] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Ginot, Gregory
    Tradler, Thomas
    Zeinalian, Mahmoud
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 635 - 686
  • [35] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Grégory Ginot
    Thomas Tradler
    Mahmoud Zeinalian
    [J]. Communications in Mathematical Physics, 2014, 326 : 635 - 686
  • [36] On higher topological Hochschild homology of rings of integers
    Dundas, Bjorn Ian
    Lindenstrauss, Ayelet
    Richter, Birgit
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 489 - 507
  • [37] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185
  • [38] Topological Hochschild homology and the homotopy descent problem
    Tsalidis, S
    [J]. TOPOLOGY, 1998, 37 (04) : 913 - 934
  • [39] Hopf algebra structure on topological Hochschild homology
    Angeltveit, Vigleik
    Rognes, John
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1223 - 1290
  • [40] Cyclotomic structure in the topological Hochschild homology of DX
    Malkiewich, Cary
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (04): : 2307 - 2356