Topological Hochschild homology and the Bass trace conjecture

被引:2
|
作者
Berrick, A. J. [1 ,2 ]
Hesselholt, Lars [3 ,4 ]
机构
[1] Yale NUS Coll, Singapore 138614, Singapore
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen O, Denmark
关键词
ALGEBRAIC K-THEORY;
D O I
10.1515/crelle-2013-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the methods of topological Hochschild homology to shed new light on groups satisfying the Bass trace conjecture. Factorization of the Hattori-Stallings rank map through the Bokstedt-Hsiang-Madsen cyclotomic trace map leads to Linnell's restriction on such groups. As a new consequence of this restriction, we show that the conjecture holds for any group G wherein every subgroup isomorphic to the additive group of rational numbers has nontrivial and central image in some quotient of G.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条
  • [1] Real topological Hochschild homology and the Segal conjecture
    Hahn, Jeremy
    Wilson, Dylan
    [J]. ADVANCES IN MATHEMATICS, 2021, 387
  • [2] The Segal conjecture for topological Hochschild homology of Ravenel spectra
    Angelini-Knoll, Gabriel
    Quigley, J. D.
    [J]. JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2021, 16 (01) : 41 - 60
  • [3] The Segal conjecture for topological Hochschild homology of Ravenel spectra
    Gabriel Angelini-Knoll
    J. D. Quigley
    [J]. Journal of Homotopy and Related Structures, 2021, 16 : 41 - 60
  • [4] The Segal conjecture for topological Hochschild homology of complex cobordism
    Lunoe-Nielsen, Sverre
    Rognes, John
    [J]. JOURNAL OF TOPOLOGY, 2011, 4 (03) : 591 - 622
  • [5] Topological Hochschild homology
    Schwanzl, R
    Vogt, RM
    Waldhausen, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 345 - 356
  • [6] Generalized spectral categories, topological Hochschild homology and trace maps
    Tabuada, Goncalo
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 137 - 213
  • [7] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    PIRASHVILI, T
    WALDHAUSEN, F
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (01) : 81 - 98
  • [8] STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY
    HESSELHOLT, L
    [J]. ASTERISQUE, 1994, (226) : 175 - 192
  • [9] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    FIEDOROWICZ, Z
    PIRASHVILI, T
    SCHWANZL, R
    VOGT, R
    WALDHAUSEN, F
    [J]. MATHEMATISCHE ANNALEN, 1995, 303 (01) : 149 - 164
  • [10] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152