Cyclotomic structure in the topological Hochschild homology of DX

被引:10
|
作者
Malkiewich, Cary [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2017年 / 17卷 / 04期
关键词
STRING TOPOLOGY; CATEGORIES; PRODUCT; MODEL; NORM;
D O I
10.2140/agt.2017.17.2307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a finite CW complex, and let DX be its dual in the category of spectra. We demonstrate that the Poincare/Koszul duality between THH(DX) and the free loop space Sigma(infinity)(+) LX is in fact a genuinely S-1 -equivariant duality that preserves the C-n - fixed points. Our proof uses an elementary but surprisingly useful rigidity theorem for the geometric fixed point functor Phi(G) of orthogonal G-spectra.
引用
收藏
页码:2307 / 2356
页数:50
相关论文
共 50 条
  • [1] Comparing cyclotomic structures on different models for topological Hochschild homology
    Dotto, Emanuele
    Malkiewich, Cary
    Patchkoria, Irakli
    Sagave, Steffen
    Woo, Calvin
    [J]. JOURNAL OF TOPOLOGY, 2019, 12 (04) : 1146 - 1173
  • [2] On the multiplicative structure of topological Hochschild homology
    Brun, Morten
    Fiedorowicz, Zbigniew
    Vogt, Rainer M.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1633 - 1650
  • [3] Hopf algebra structure on topological Hochschild homology
    Angeltveit, Vigleik
    Rognes, John
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1223 - 1290
  • [4] Topological Hochschild homology
    Schwanzl, R
    Vogt, RM
    Waldhausen, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 345 - 356
  • [5] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    PIRASHVILI, T
    WALDHAUSEN, F
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (01) : 81 - 98
  • [6] STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY
    HESSELHOLT, L
    [J]. ASTERISQUE, 1994, (226) : 175 - 192
  • [7] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    FIEDOROWICZ, Z
    PIRASHVILI, T
    SCHWANZL, R
    VOGT, R
    WALDHAUSEN, F
    [J]. MATHEMATISCHE ANNALEN, 1995, 303 (01) : 149 - 164
  • [8] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [9] TOPOLOGICAL HOCHSCHILD HOMOLOGY OF AS A MODULE
    Basu, Samik
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (01) : 253 - 280