Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement

被引:80
|
作者
Dai, Xinyi [1 ]
Kong, Depeng [1 ]
Du, Jin [1 ]
Zhang, Yue [1 ]
Ping, Ping [2 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Thermal runaway; Phase change material; Fire hazards; Flame retardant; Heat release rate; MANAGEMENT-SYSTEM; HEAT SINKS; FIRE; PERFORMANCE; MODULE; OPTIMIZATION; PROPAGATION; BEHAVIOR; PACK; COMBUSTION;
D O I
10.1016/j.psep.2021.12.051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal safety is important for the process of storage and utilization of lithium-ion battery. Once battery thermal runaway (TR) happens, accidents are difficult to avoid. As a cooling medium for battery thermal management, phase change material (PCM) can effectively maintain the temperature under normal operations. However, the flammability of PCM makes it doubtful to work safely under extreme conditions like TR. Herein, several sets of TR experiments have been conducted on 18650 batteries covered without and with different PCMs. Paraffin PCM (PPCM) and composite PCM (CPCM) are considered to explore their effects on TR. Results demonstrate that PPCM delays the onset of TR by 277 s and lowers the battery temperature utilizing its heat absorption while CPCM has little effect. However, flammable PPCM increases the heat release significantly which brings great fire risk. Based on the foregoing, a flame-retarded PPCM mixed with hydroxide flame-retardant proved to relieve the adverse effects of PPCM as well as maintain the performance for inhibiting TR. Results show that the addition of flame retardants reduces the peak heat release rate from 29 kW to 15.5 kW, which gives guidance in the process safety assurance and fire protection design in a real engineering application of battery thermal management. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 50 条
  • [1] Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation
    Zhi, Maoyong
    Fan, Rong
    Zheng, Lingling
    Yue, Shan
    Pan, Zhiheng
    Sun, Qiang
    Liu, Quanyi
    ENERGY, 2024, 307
  • [2] Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials
    Chen, Mingyi
    Zhu, Minghao
    Zhang, Siyu
    Ouyang, Dongxu
    Weng, Jingwen
    Wei, Ruichao
    Chen, Yin
    Zhao, Luyao
    Wang, Jian
    APPLIED THERMAL ENGINEERING, 2023, 235
  • [3] Investigation of the thermal management potential of phase change material for lithium-ion battery
    Wang, Haocheng
    Guo, Yanhong
    Ren, Yong
    Yeboah, Siegfried
    Wang, Jing
    Long, Fei
    Zhang, Zhiyu
    Jiang, Rui
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [4] Experimental study on the effect of phase change material on thermal runaway characteristics of lithium-ion battery under different triggering methods
    Mei, Jie
    Shi, Guoqing
    Li, Qing
    Liu, He
    Wang, Zhi
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [5] Investigation on the optimization strategy of phase change material thermal management system for lithium-ion battery
    Mei, Jie
    Shi, Guoqing
    Liu, He
    Wang, Zhi
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [6] Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
    Zhang, Wencan
    Liang, Zhicheng
    Yin, Xiuxing
    Ling, Guozhi
    APPLIED THERMAL ENGINEERING, 2021, 184
  • [7] Study on Thermal Runaway Risk Prevention of Lithium-Ion Battery with Composite Phase Change Materials
    Zhang, Kai
    Wang, Lu
    Xu, Chenbo
    Wu, Hejun
    Huang, Dongmei
    Jin, Kan
    Xu, Xiaomeng
    FIRE-SWITZERLAND, 2023, 6 (05):
  • [8] EPDM Flame Retardant & Thermal Protection Material in Thermal Runaway of Lithium-ion Batteries
    Li, Xiang-Mei
    Qiao, Yu
    Wang, Shu-Ping
    Chen, Jing-Hui
    Fan, Ming-Hao
    Gao, Fei
    He, Ji-Yu
    Yang, Kai
    Yang, Rong-Jie
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (06): : 674 - 682
  • [9] Thermal management of lithium-ion battery module using the phase change material
    Nagmule, Siddharth A.
    Salunkhe, Pramod B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (23) : 5767 - 5776
  • [10] Simulation of lithium-ion battery thermal runaway considering active material volume fraction effect
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 206