Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement

被引:80
|
作者
Dai, Xinyi [1 ]
Kong, Depeng [1 ]
Du, Jin [1 ]
Zhang, Yue [1 ]
Ping, Ping [2 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Thermal runaway; Phase change material; Fire hazards; Flame retardant; Heat release rate; MANAGEMENT-SYSTEM; HEAT SINKS; FIRE; PERFORMANCE; MODULE; OPTIMIZATION; PROPAGATION; BEHAVIOR; PACK; COMBUSTION;
D O I
10.1016/j.psep.2021.12.051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal safety is important for the process of storage and utilization of lithium-ion battery. Once battery thermal runaway (TR) happens, accidents are difficult to avoid. As a cooling medium for battery thermal management, phase change material (PCM) can effectively maintain the temperature under normal operations. However, the flammability of PCM makes it doubtful to work safely under extreme conditions like TR. Herein, several sets of TR experiments have been conducted on 18650 batteries covered without and with different PCMs. Paraffin PCM (PPCM) and composite PCM (CPCM) are considered to explore their effects on TR. Results demonstrate that PPCM delays the onset of TR by 277 s and lowers the battery temperature utilizing its heat absorption while CPCM has little effect. However, flammable PPCM increases the heat release significantly which brings great fire risk. Based on the foregoing, a flame-retarded PPCM mixed with hydroxide flame-retardant proved to relieve the adverse effects of PPCM as well as maintain the performance for inhibiting TR. Results show that the addition of flame retardants reduces the peak heat release rate from 29 kW to 15.5 kW, which gives guidance in the process safety assurance and fire protection design in a real engineering application of battery thermal management. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 50 条
  • [31] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    Tang, W.
    Xu, X. M.
    Li, R. Z.
    Jin, H. F.
    Cao, L. D.
    Wang, H. M.
    IONICS, 2020, 26 (12) : 6133 - 6143
  • [32] Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material
    Morali, Ugur
    ENERGY STORAGE, 2025, 7 (01)
  • [33] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    W. Tang
    X. M. Xu
    R. Z. Li
    H. F. Jin
    L. D. Cao
    H. M. Wang
    Ionics, 2020, 26 : 6133 - 6143
  • [34] Effect of using a heatsink with nanofluid flow and phase change material on thermal management of plate lithium-ion battery
    Rostami, Sara
    Nadooshan, Afshin Ahmadi
    Raisi, Afrasiab
    Bayareh, Morteza
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [35] Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system
    Morali, Ugur
    TURKISH JOURNAL OF CHEMISTRY, 2022, 46 (05) : 1620 - 1631
  • [36] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [37] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [38] Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material
    Ouyang, Dongxu
    Weng, Jingwen
    Hu, Jianyao
    Liu, Jiahao
    Chen, Mingyi
    Huang, Que
    Wang, Jian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A559 - A567
  • [39] Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling
    An, Zhiguo
    Chen, Xing
    Zhao, Lin
    Gao, Zhengyuan
    APPLIED THERMAL ENGINEERING, 2019, 163
  • [40] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81