Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement

被引:80
|
作者
Dai, Xinyi [1 ]
Kong, Depeng [1 ]
Du, Jin [1 ]
Zhang, Yue [1 ]
Ping, Ping [2 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Thermal runaway; Phase change material; Fire hazards; Flame retardant; Heat release rate; MANAGEMENT-SYSTEM; HEAT SINKS; FIRE; PERFORMANCE; MODULE; OPTIMIZATION; PROPAGATION; BEHAVIOR; PACK; COMBUSTION;
D O I
10.1016/j.psep.2021.12.051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal safety is important for the process of storage and utilization of lithium-ion battery. Once battery thermal runaway (TR) happens, accidents are difficult to avoid. As a cooling medium for battery thermal management, phase change material (PCM) can effectively maintain the temperature under normal operations. However, the flammability of PCM makes it doubtful to work safely under extreme conditions like TR. Herein, several sets of TR experiments have been conducted on 18650 batteries covered without and with different PCMs. Paraffin PCM (PPCM) and composite PCM (CPCM) are considered to explore their effects on TR. Results demonstrate that PPCM delays the onset of TR by 277 s and lowers the battery temperature utilizing its heat absorption while CPCM has little effect. However, flammable PPCM increases the heat release significantly which brings great fire risk. Based on the foregoing, a flame-retarded PPCM mixed with hydroxide flame-retardant proved to relieve the adverse effects of PPCM as well as maintain the performance for inhibiting TR. Results show that the addition of flame retardants reduces the peak heat release rate from 29 kW to 15.5 kW, which gives guidance in the process safety assurance and fire protection design in a real engineering application of battery thermal management. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 50 条
  • [41] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [42] Modeling the propagation of internal thermal runaway in lithium-ion battery
    Zhang, Yue
    Song, Laifeng
    Tian, Jiamin
    Mei, Wenxin
    Jiang, Lihua
    Sun, Jinhua
    Wang, Qingsong
    APPLIED ENERGY, 2024, 362
  • [43] Lithium-ion battery thermal management for electric vehicles using phase change material: A review
    Mahmud, Md
    Rahman, Kazi Sajedur
    Rokonuzzaman, Md.
    Habib, A. K. M. Ahasan
    Islam, Md Rafiqul
    Motakabber, S. M. A.
    Channumsin, Sittiporn
    Chowdhury, Shahariar
    RESULTS IN ENGINEERING, 2023, 20
  • [44] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Meng Wang
    Anh V.Le
    Yang Shi
    Daniel J.Noelle
    Hyojung Yoon
    Minghao Zhang
    Y.Shirley Meng
    Yu Qiao
    Journal of Materials Science & Technology, 2016, 32 (11) : 1117 - 1121
  • [45] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Wang, Meng
    Le, Anh V.
    Shi, Yang
    Noelle, Daniel J.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (11) : 1117 - 1121
  • [46] Numerical optimization for a phase change material based lithium-ion battery thermal management system
    Wang, Shuping
    Zhang, Danfeng
    Li, Changhao
    Wang, Junkai
    Zhang, Jiaqing
    Cheng, Yifeng
    Mei, Wenxin
    Cheng, Siyuan
    Qin, Peng
    Duan, Qiangling
    Sun, Jinhua
    Wang, Qingsong
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [47] Flame retardant composite phase change materials with MXene for lithium-ion battery thermal management systems
    Wang, Yuqi
    Zhao, Luyao
    Zhan, Wang
    Chen, Yin
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [48] Influence of battery cell spacing on thermal performance of phase change material filled lithium-ion battery pack
    Patel, Jay R.
    Rathod, Manish K.
    ENERGY, 2024, 291
  • [49] Numerical study on lithium-ion battery thermal management by using phase change material in various battery arrangements
    Yang, Huiqian
    Han, Zhitao
    PRZEMYSL CHEMICZNY, 2024, 103 (08):
  • [50] Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe
    Gao, Chen
    Sun, Kai
    Song, KeWei
    Zhang, Kun
    Hou, QingZhi
    JOURNAL OF ENERGY STORAGE, 2024, 82