Simulation of lithium-ion battery thermal runaway considering active material volume fraction effect

被引:1
|
作者
Ding, Yan [1 ,2 ]
Lu, Li [1 ,2 ]
Zhang, Huangwei [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore
[2] Natl Univ Singapore Chongqing Res Inst, Chongqing 401123, Peoples R China
关键词
Lithium-ion battery; Side reactions; Thermal runaway; Heat transfer; Active material; Volume fraction; ABUSE; ELECTRODE; BEHAVIOR; SAFETY; MODEL; CELL; MECHANISM; VEHICLES;
D O I
10.1016/j.ijthermalsci.2024.109336
中图分类号
O414.1 [热力学];
学科分类号
摘要
The multi-physics solver BatteryFOAM couples with the side reaction model for thermal runaway (TR) simulations, including the electrolyte decomposition (E) and solid electrolyte interface layer decomposition (SEI), and the reaction of the electrolyte with graphite intercalated lithium (NE-E) and the reaction of positive electrode active material with the electrolyte (PE-E). This solver is used to study the lithium-ion battery (LIB) TR at different conditions. The published experimental results are used to validate the effectiveness and practicability of BatteryFOAM in predicting the temperature under constat high temperature. We also discuss the reactant concentration, reaction rate, and heat release rate during the LIB TR. The influences of the external factor of the equal equivalent heat transfer (h) on the battery TR is considered, and the sequence in which the battery reaches the critical temperature rising rate (RTR, 60 K/min) and the separator failure temperature (Tsep) is predicted. The results demonstrate that overall the exothermic reaction peaks arise sequentially from SEI decomposition, PE-E reaction, NE-E reaction, and electrolyte decomposition, and NE-E reaction has three exothermic peaks induced by other three side reactions. PE-E reaction contributes more heat for fuse energy to trigger TR, but the NE-E reaction and electrolyte decomposition mainly accounts for the runaway energy. In addition, increasing SEI and electrolyte decomposition intensity is found no effect on the TR temperature. Besides, the rapid reaching to RTRis caused by the high heat release rate of positive electrode active material with electrolyte. Results further show that reducing the fNE-E within 5.0 % will significantly reduce TR risk.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Simulation of Lithium-Ion Battery with Effect of Volume Expansion of Active Materials
    Inoue, Gen
    Ikeshit, Kazuki
    Iwabu, Minami
    Sagae, Yukari
    Kawase, Motoaki
    SELECTED PROCEEDINGS FROM THE 232ND ECS MEETING, 2017, 80 (10): : 275 - 282
  • [2] Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [3] Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries
    Miranda, D.
    Almeida, A. M.
    Lanceros-Mendez, S.
    Costa, C. M.
    ENERGY, 2019, 185 : 1250 - 1262
  • [4] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Yawen Li
    Lihua Jiang
    Zonghou Huang
    Zhuangzhuang Jia
    Peng Qin
    Qingsong Wang
    Fire Technology, 2023, 59 : 1137 - 1155
  • [5] The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules
    Luo, Weiyi
    Zhao, Luyao
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [6] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Li, Yawen
    Jiang, Lihua
    Huang, Zonghou
    Jia, Zhuangzhuang
    Qin, Peng
    Wang, Qingsong
    FIRE TECHNOLOGY, 2023, 59 (03) : 1137 - 1155
  • [7] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [8] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81
  • [9] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [10] Modeling the propagation of internal thermal runaway in lithium-ion battery
    Zhang, Yue
    Song, Laifeng
    Tian, Jiamin
    Mei, Wenxin
    Jiang, Lihua
    Sun, Jinhua
    Wang, Qingsong
    APPLIED ENERGY, 2024, 362