Application of the realization of homogeneous Sobolev spaces to Navier-Stokes

被引:11
|
作者
Brandolese, L [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
molecules; Hardy space; pointwise multipliers;
D O I
10.1137/S0036141004444408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Molecule spaces have been introduced by Furioli and Terraneo [Funkcial. Ekvac., 45 (2002), pp. 141-160] to study some local behavior of solutions to the Navier-Stokes equations. In this paper we give a new characterization of these spaces and simplify Furioli and Terraneo's result. Our analysis also provides a persistence result for Navier-Stokes in a subspace of L-2(R-3, (1 + \ x\(2))(alpha)dx), alpha < 5/2, which fills a gap between previously known results in the weighted-L-2 setting and those on the pointwise decay of the velocity field at infinity. Our main tool is the realization of homogeneous Sobolev spaces introduced by Bourdaud.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 50 条
  • [42] A Regularity Criterion for the Navier-Stokes Equations in the Multiplier Spaces
    Zhu, Xiang'ou
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [43] Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces
    Zhi Min Chen
    Zhouping Xin
    Journal of Mathematical Fluid Mechanics, 2001, 3 : 152 - 182
  • [44] STOKES AND NAVIER-STOKES PROBLEMS WITH NAVIER-TYPE BOUNDARY CONDITION IN LP-SPACES
    Al Baba, Hind
    Amrouche, Cherif
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2019, 11 (02): : 203 - 226
  • [45] ON THE FRACTIONAL CHEMOTAXIS NAVIER-STOKES SYSTEM IN THE CRITICAL SPACES
    Azevedo, Joelma
    Cuevas, Claudio
    Dantas, Jarbas
    Silva, Clessius
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 538 - 559
  • [46] A regularity class for the Navier-Stokes equations in Lorentz spaces
    Hermann Sohr
    Journal of Evolution Equations, 2001, 1 : 441 - 467
  • [47] On the uniqueness in critical spaces for compressible Navier-Stokes equations
    Danchin, R
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (01): : 111 - 128
  • [48] The resolution of the Navier-Stokes equations in tensor product spaces
    Iftimie, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (02): : 179 - 182
  • [49] Heat and Navier-Stokes equations in supercritical function spaces
    Baaske, Franka
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 281 - 301
  • [50] Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces
    Chen, Zhi Min
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (02) : 152 - 182