STOKES AND NAVIER-STOKES PROBLEMS WITH NAVIER-TYPE BOUNDARY CONDITION IN LP-SPACES

被引:4
|
作者
Al Baba, Hind [1 ,2 ]
Amrouche, Cherif [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2019年 / 11卷 / 02期
关键词
Stokes and Navier-Stokes Problem; Navier-type boundary conditions; EQUATIONS; REGULARITY; FLOW;
D O I
10.7153/dea-2019-11-08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the semigroup theory for the Stokes equation with Navier type boundary conditions developed in [2, 3], we first prove the maximal L-p - L-q regularity for the strong, weak and very weak solutions of the inhomogeneous Stokes problem with Navier-type boundary conditions in a bounded domain Omega, not necessarily simply connected. We also prove the existence of a unique local in time classical solution to the Navier Stokes problem with Navier-type boundary conditions and show that it is global in time for small initial data.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 50 条
  • [1] Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on Lp-Spaces
    Hind Al Baba
    Chérif Amrouche
    Miguel Escobedo
    [J]. Archive for Rational Mechanics and Analysis, 2017, 223 : 881 - 940
  • [2] Lp-theory for Stokes and Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1515 - 1547
  • [3] Analyticity of the semi-group generated by the Stokes operator with Navier-type boundary conditions on Lp-spaces
    Al Baba, Hind
    Amrouche, Cherif
    Escobedo, Miguel
    [J]. RECENT ADVANCES IN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 666 : 23 - 40
  • [4] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [5] ON A ν-CONTINUOUS FAMILY OF STRONG SOLUTIONS TO THE EULER OR NAVIER-STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITION
    Bellout, Hamid
    Neustupa, Jiri
    Penel, Patrick
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) : 1353 - 1373
  • [6] On viscosity-continuous solutions of the Euler and Navier-Stokes equations with a Navier-type boundary condition
    Bellout, Hamid
    Neustupa, Jiri
    Penel, Patrick
    [J]. COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) : 1141 - 1146
  • [7] Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) : 5091 - 5112
  • [8] ON THE STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITIONS
    Amrouche, Cherif
    Seloula, Nour El Houda
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04): : 581 - 607
  • [9] L2-Decay of Solutions to the Navier-Stokes System with Navier-Type Boundary Conditions
    Al Baba, Hind
    Jazar, Mustapha
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [10] Mild solutions of stochastic Navier-Stokes equation with jump noise in Lp-spaces
    Fernando, B. P. W.
    Ruediger, B.
    Sritharan, S. S.
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1615 - 1621