STOKES AND NAVIER-STOKES PROBLEMS WITH NAVIER-TYPE BOUNDARY CONDITION IN LP-SPACES

被引:4
|
作者
Al Baba, Hind [1 ,2 ]
Amrouche, Cherif [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2019年 / 11卷 / 02期
关键词
Stokes and Navier-Stokes Problem; Navier-type boundary conditions; EQUATIONS; REGULARITY; FLOW;
D O I
10.7153/dea-2019-11-08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the semigroup theory for the Stokes equation with Navier type boundary conditions developed in [2, 3], we first prove the maximal L-p - L-q regularity for the strong, weak and very weak solutions of the inhomogeneous Stokes problem with Navier-type boundary conditions in a bounded domain Omega, not necessarily simply connected. We also prove the existence of a unique local in time classical solution to the Navier Stokes problem with Navier-type boundary conditions and show that it is global in time for small initial data.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 50 条
  • [31] Navier-Stokes/Allen-Cahn System with Generalized Navier Boundary Condition
    Chen, Ya-zhou
    He, Qiao-lin
    Huang, Bin
    Shi, Xiao-ding
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 98 - 115
  • [32] Navier-Stokes/Allen-Cahn System with Generalized Navier Boundary Condition
    Ya-zhou Chen
    Qiao-lin He
    Bin Huang
    Xiao-ding Shi
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 98 - 115
  • [33] Navier-Stokes/Allen-Cahn System with Generalized Navier Boundary Condition
    Ya-zhou CHEN
    Qiao-lin HE
    Bin HUANG
    Xiao-ding SHI
    ActaMathematicaeApplicataeSinica, 2022, 38 (01) : 98 - 115
  • [34] APPROXIMATIONS FOR NAVIER-STOKES PROBLEMS
    RAUTMANN, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (05): : T249 - T251
  • [35] ON THE STOKES AND NAVIER-STOKES SYSTEM FOR DOMAINS WITH NONCOMPACT BOUNDARY IN L(Q)-SPACES
    FARWIG, R
    SOHR, H
    MATHEMATISCHE NACHRICHTEN, 1994, 170 : 53 - 77
  • [36] STOKES AND NAVIER-STOKES EQUATIONS WITH A NONHOMOGENEOUS DIVERGENCE CONDITION
    Raymond, Jean-Pierre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (04): : 1537 - 1564
  • [37] BOUNDARY-VALUE PROBLEMS FOR NAVIER-STOKES EQUATIONS
    FABES, EB
    LEWIS, JE
    RIVIERE, NM
    AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) : 626 - 668
  • [38] Penalty Method for the Stationary Navier-Stokes Problems Under the Slip Boundary Condition
    Zhou, Guanyu
    Kashiwabara, Takahito
    Oikawa, Issei
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 339 - 374
  • [39] FREE-BOUNDARY PROBLEMS FOR THE NAVIER-STOKES EQUATIONS
    BEMELMANS, J
    ASTERISQUE, 1984, (118) : 115 - 123
  • [40] Instationary Stokes problem with pressure boundary condition in Lp-spaces
    Al Baba, Hind
    Amrouche, Cherif
    Seloula, Nour
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) : 641 - 667