STOKES AND NAVIER-STOKES PROBLEMS WITH NAVIER-TYPE BOUNDARY CONDITION IN LP-SPACES

被引:4
|
作者
Al Baba, Hind [1 ,2 ]
Amrouche, Cherif [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2019年 / 11卷 / 02期
关键词
Stokes and Navier-Stokes Problem; Navier-type boundary conditions; EQUATIONS; REGULARITY; FLOW;
D O I
10.7153/dea-2019-11-08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the semigroup theory for the Stokes equation with Navier type boundary conditions developed in [2, 3], we first prove the maximal L-p - L-q regularity for the strong, weak and very weak solutions of the inhomogeneous Stokes problem with Navier-type boundary conditions in a bounded domain Omega, not necessarily simply connected. We also prove the existence of a unique local in time classical solution to the Navier Stokes problem with Navier-type boundary conditions and show that it is global in time for small initial data.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 50 条