The eigenvalue problem of a singular k-Hessian equation

被引:29
|
作者
Zhang, Xinguang [1 ,3 ]
Xu, Pengtao [2 ]
Wu, Yonghong [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200083, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
k-Hessian equation; Upper-lower solutions; Eigenvalue problem; Singularity; DIRICHLET PROBLEM; RADIAL SOLUTIONS; EXISTENCE; NONEXISTENCE; SUFFICIENT;
D O I
10.1016/j.aml.2021.107666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the radial solutions for the eigenvalue problem of a singular k-Hessian equation. By constructing the upper and lower solutions of the k-Hessian equation, the existence of a radial solution for the eigenvalue problem is established via Schauder's fixed point theorem under the case where the nonlinearity possesses a singularity with respect to the space variable. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Existence and multiplicity of radially symmetric k-admissible solutions for a k-Hessian equation
    Miao, Liangying
    He, Zhiqian
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [42] Boundary Regularity for k-Hessian Equations
    You Li
    Meng Ni Li
    Yan Nan Liu
    Acta Mathematica Sinica, English Series, 2023, 39 : 2393 - 2413
  • [43] Existence and multiplicity of radially symmetric k-admissible solutions for a k-Hessian equation
    Liangying Miao
    Zhiqian He
    Boundary Value Problems, 2022
  • [44] Boundary Regularity for k-Hessian Equations
    You LI
    Meng Ni LI
    Yan Nan LIU
    ActaMathematicaSinica,EnglishSeries, 2023, (12) : 2393 - 2413
  • [45] Local solvability of the k-Hessian equations
    TIAN GuJi
    WANG Qi
    XU Chao-Jiang
    ScienceChina(Mathematics), 2016, 59 (09) : 1753 - 1768
  • [46] Boundary Regularity for k-Hessian Equations
    Li, You
    Li, Meng Ni
    Liu, Yan Nan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (12) : 2393 - 2413
  • [47] Isoperimetric inequalities for k-Hessian equations
    Mohammed, Ahmed
    Porru, Giovanni
    Safoui, Abdessalam
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (02) : 181 - 203
  • [48] Polyharmonic k-Hessian equations in RN
    Balodis, Pedro
    Escudero, Carlos
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3363 - 3399
  • [49] ITERATIVE METHODS FOR k-HESSIAN EQUATIONS
    Awanou, Gerard
    METHODS AND APPLICATIONS OF ANALYSIS, 2018, 25 (01) : 51 - 71
  • [50] Local solvability of the k-Hessian equations
    Tian GuJi
    Wang Qi
    Xu Chao-Jiang
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1753 - 1768