The eigenvalue problem of a singular k-Hessian equation

被引:29
|
作者
Zhang, Xinguang [1 ,3 ]
Xu, Pengtao [2 ]
Wu, Yonghong [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200083, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
k-Hessian equation; Upper-lower solutions; Eigenvalue problem; Singularity; DIRICHLET PROBLEM; RADIAL SOLUTIONS; EXISTENCE; NONEXISTENCE; SUFFICIENT;
D O I
10.1016/j.aml.2021.107666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the radial solutions for the eigenvalue problem of a singular k-Hessian equation. By constructing the upper and lower solutions of the k-Hessian equation, the existence of a radial solution for the eigenvalue problem is established via Schauder's fixed point theorem under the case where the nonlinearity possesses a singularity with respect to the space variable. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条