Isoperimetric inequalities for k-Hessian equations

被引:2
|
作者
Mohammed, Ahmed [1 ]
Porru, Giovanni [2 ]
Safoui, Abdessalam [3 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[2] Univ Cagliari, Dept Math & Informat, I-09124 Cagliari, Italy
[3] Univ Marrakesh, Dept Math, Marrakech, Morocco
关键词
Monge-Ampere type equations; rearrangements; eigenvalues; isoperimetric inequalities; ELLIPTIC-EQUATIONS; SYMMETRIZATION;
D O I
10.1515/anona-2011-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogeneous Dirichlet problem for a special k-Hessian equation of sub-linear type in a (k - 1)-convex domain Omega subset of R-n, 1 <= k <= n. We study the comparison between the solution of this problem and the ( radial) solution of the corresponding problem in a ball having the same (k - 1)-quermassintegral as Omega. Next, we consider the eigenvalue problem for the k-Hessian equation and study a comparison between its principal eigenfunction and the principal eigenfunction of the corresponding problem in a ball having the same (k - 1)-quermassintegral as Omega. Symmetrization techniques and comparison principles are the main tools used to get these inequalities.
引用
收藏
页码:181 / 203
页数:23
相关论文
共 50 条
  • [1] Boundary Regularity for k-Hessian Equations
    You Li
    Meng Ni Li
    Yan Nan Liu
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 2393 - 2413
  • [2] Boundary Regularity for k-Hessian Equations
    You LI
    Meng Ni LI
    Yan Nan LIU
    [J]. Acta Mathematica Sinica,English Series, 2023, (12) : 2393 - 2413
  • [3] Local solvability of the k-Hessian equations
    TIAN GuJi
    WANG Qi
    XU Chao-Jiang
    [J]. Science China Mathematics, 2016, 59 (09) : 1753 - 1768
  • [4] Boundary Regularity for k-Hessian Equations
    Li, You
    Li, Meng Ni
    Liu, Yan Nan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (12) : 2393 - 2413
  • [5] Polyharmonic k-Hessian equations in RN
    Balodis, Pedro
    Escudero, Carlos
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3363 - 3399
  • [6] A coupled system of k-Hessian equations
    Feng, Meiqiang
    Zhang, Xuemei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (09) : 7377 - 7394
  • [7] ITERATIVE METHODS FOR k-HESSIAN EQUATIONS
    Awanou, Gerard
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2018, 25 (01) : 51 - 71
  • [8] Local solvability of the k-Hessian equations
    Tian GuJi
    Wang Qi
    Xu Chao-Jiang
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1753 - 1768
  • [9] Local solvability of the k-Hessian equations
    GuJi Tian
    Qi Wang
    Chao-Jiang Xu
    [J]. Science China Mathematics, 2016, 59 : 1753 - 1768
  • [10] ON THE EXTERIOR PROBLEM FOR PARABOLIC K-HESSIAN EQUATIONS
    Zhou, Ziwei
    Bao, Jiguang
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3407 - 3420