OPTIMAL REGULARITY AND ERROR ESTIMATES OF A SPECTRAL GALERKIN METHOD FOR FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS

被引:49
|
作者
Hao, Zhaopeng [1 ]
Zang, Zhongqiang [1 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
regularity; pseudo-eigenrelation; weighted Sobolev spaces; fast solver with quasi-linear complexity; optimal error estimates; fractional Laplacian; spectral methods; NUMERICAL-METHODS; PART I; LAPLACIAN; DOMAINS; SPACES;
D O I
10.1137/18M1234679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a spectral Galerkin method for the fractional advection-diffusion-reaction equations in one dimension. We first prove sharp regularity estimates of solutions in non-weighted and weighted Sobolev spaces. Then we obtain optimal convergence orders of the spectral Galerkin methods for both fractional advection-diffusion and diffusion-reaction equations. We also present an iterative solver with a quasi-optimal complexity. Numerical results are presented to verify the theoretical analysis.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [41] Optimal spectral Galerkin approximation for time and space fractional reaction-diffusion equations
    Hendy, A. S.
    Qiao, L.
    Aldraiweesh, A.
    Zaky, M. A.
    APPLIED NUMERICAL MATHEMATICS, 2024, 201 : 118 - 128
  • [42] A new optimal error analysis of a mixed finite element method for advection-diffusion-reaction Brinkman flow
    Gao, Huadong
    Xie, Wen
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (05)
  • [43] OPTIMAL ERROR ESTIMATES OF THE DIRECT DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Liu, Hailiang
    MATHEMATICS OF COMPUTATION, 2015, 84 (295) : 2263 - 2295
  • [44] A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations
    Tang, Bo
    Chen, Yanping
    Lin, Xiuxiu
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [45] The LEM exponential integrator for advection-diffusion-reaction equations
    Caliari, Marco
    Vianello, Marco
    Bergamaschi, Luca
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) : 56 - 63
  • [46] Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations
    Dupont, TF
    Liu, YJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 914 - 927
  • [47] Reproducing kernel functions-based meshless method for variable order fractional advection-diffusion-reaction equations
    Li, Xiuying
    Wu, Boying
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3181 - 3186
  • [48] A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem
    Araya, R
    Poza, AH
    Stephan, EP
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (07): : 1119 - 1139
  • [49] Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces
    Ervin, V. J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 : 294 - 325
  • [50] Error estimates of general linear and spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian
    Zhang, Yanming
    Li, Yu
    Yu, Yuexin
    Wang, Wansheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02):