OPTIMAL REGULARITY AND ERROR ESTIMATES OF A SPECTRAL GALERKIN METHOD FOR FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS

被引:49
|
作者
Hao, Zhaopeng [1 ]
Zang, Zhongqiang [1 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
regularity; pseudo-eigenrelation; weighted Sobolev spaces; fast solver with quasi-linear complexity; optimal error estimates; fractional Laplacian; spectral methods; NUMERICAL-METHODS; PART I; LAPLACIAN; DOMAINS; SPACES;
D O I
10.1137/18M1234679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a spectral Galerkin method for the fractional advection-diffusion-reaction equations in one dimension. We first prove sharp regularity estimates of solutions in non-weighted and weighted Sobolev spaces. Then we obtain optimal convergence orders of the spectral Galerkin methods for both fractional advection-diffusion and diffusion-reaction equations. We also present an iterative solver with a quasi-optimal complexity. Numerical results are presented to verify the theoretical analysis.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [21] Optimal Petrov-Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval
    Zheng, Xiangcheng
    Ervin, V. J.
    Wang, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [22] Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction–Subdiffusion Equations
    Dongfang Li
    Jiwei Zhang
    Zhimin Zhang
    Journal of Scientific Computing, 2018, 76 : 848 - 866
  • [23] Regularity theory for time-fractional advection-diffusion-reaction equations (vol 79, pg 947, 2020)
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85 : 82 - 83
  • [24] Regularity and wave study of an advection-diffusion-reaction equation
    Akgul, Ali
    Ahmed, Nauman
    Shahzad, Muhammad
    Baber, Muhammad Zafarullah
    Iqbal, Muhammad Sajid
    Chan, Choon Kit
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction-Diffusion Equation
    Zhang, Zhongqiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1087 - 1110
  • [26] A fully discrete H1-Galerkin method with quadrature for nonlinear advection-diffusion-reaction equations
    Ganesh, M.
    Mustapha, K.
    NUMERICAL ALGORITHMS, 2006, 43 (04) : 355 - 383
  • [27] Fractal-fractional advection-diffusion-reaction equations by Ritz approximation approach
    Nasrudin, Farah Suraya Md
    Phang, Chang
    Kanwal, Afshan
    OPEN PHYSICS, 2023, 21 (01):
  • [28] Fractional Jacobi Galerkin spectral schemes for multi-dimensional time fractional advection–diffusion–reaction equations
    Ramy M. Hafez
    Magda Hammad
    Eid H. Doha
    Engineering with Computers, 2022, 38 : 841 - 858
  • [29] Nonstandard methods for advection-diffusion-reaction equations
    Kojouharov, HV
    Chen, BM
    APPLICATIONS OF NONSTANDARD FINITE DIFFERENCE SCHEMES, 2000, : 55 - 108
  • [30] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944