OPTIMAL REGULARITY AND ERROR ESTIMATES OF A SPECTRAL GALERKIN METHOD FOR FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS

被引:49
|
作者
Hao, Zhaopeng [1 ]
Zang, Zhongqiang [1 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
regularity; pseudo-eigenrelation; weighted Sobolev spaces; fast solver with quasi-linear complexity; optimal error estimates; fractional Laplacian; spectral methods; NUMERICAL-METHODS; PART I; LAPLACIAN; DOMAINS; SPACES;
D O I
10.1137/18M1234679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a spectral Galerkin method for the fractional advection-diffusion-reaction equations in one dimension. We first prove sharp regularity estimates of solutions in non-weighted and weighted Sobolev spaces. Then we obtain optimal convergence orders of the spectral Galerkin methods for both fractional advection-diffusion and diffusion-reaction equations. We also present an iterative solver with a quasi-optimal complexity. Numerical results are presented to verify the theoretical analysis.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条