regularity;
pseudo-eigenrelation;
weighted Sobolev spaces;
fast solver with quasi-linear complexity;
optimal error estimates;
fractional Laplacian;
spectral methods;
NUMERICAL-METHODS;
PART I;
LAPLACIAN;
DOMAINS;
SPACES;
D O I:
10.1137/18M1234679
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We investigate a spectral Galerkin method for the fractional advection-diffusion-reaction equations in one dimension. We first prove sharp regularity estimates of solutions in non-weighted and weighted Sobolev spaces. Then we obtain optimal convergence orders of the spectral Galerkin methods for both fractional advection-diffusion and diffusion-reaction equations. We also present an iterative solver with a quasi-optimal complexity. Numerical results are presented to verify the theoretical analysis.
机构:
Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USAWorcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
Hao, Zhaopeng
Lin, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USAWorcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
Lin, Guang
Zhang, Zhongqiang
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USAWorcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA