An averaging theorem for quasilinear Hamiltonian PDEs

被引:10
|
作者
Bambusi, D [1 ]
机构
[1] Univ Milan, Dipartmento Matemat, I-20133 Milan, Italy
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 04期
关键词
D O I
10.1007/s00023-003-0144-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of Hamiltonian quasilinear PDEs close to elliptic equilibria. Under a suitable nonresonance condition we prove an averaging theorem according to which any solution corresponding to smooth initial data with small amplitude remains very close to a torus up to long times. An application to quasilinear wave equations in an n-dimensional paralleliped is given.
引用
收藏
页码:685 / 712
页数:28
相关论文
共 50 条
  • [21] Hamiltonian Structures for General PDEs
    Kersten, P.
    Krasil'shchik, I. S.
    Verbovetsky, A. M.
    Vitolo, R.
    DIFFERENTIAL EQUATIONS: GEOMETRY, SYMMETRIES AND INTEGRABILITY - THE ABEL SYMPOSIUM 2008, 2009, 5 : 187 - 198
  • [22] Hamiltonian PDEs and Frobenius manifolds
    Dubrovin, B. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (06) : 999 - 1010
  • [23] Variational methods for Hamiltonian PDEs
    Berti, Massimiliano
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 391 - 420
  • [24] Numerical methods for Hamiltonian PDEs
    Bridges, Thomas J.
    Reich, Sebastian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5287 - 5320
  • [25] Quasilinear PDEs, Interpolation Spaces and Holderian mappings
    Ahmed, I.
    Fiorenza, A.
    Formica, M. R.
    Gogatishvili, A.
    El Hamidi, A.
    Rakotoson, J. M.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 895 - 950
  • [26] The dual approach to stationary and evolution quasilinear PDEs
    Selvitella, Alessandro
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02): : 1 - 22
  • [27] Quasilinear first-order PDEs with hysteresis
    Visintin, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 401 - 419
  • [28] Maximum principle for quasilinear stochastic PDEs with obstacle
    Denis, Laurent
    Matoussi, Anis
    Zhang, Jing
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 32
  • [29] Stochastic homogenization of quasilinear PDEs with a spatial degeneracy
    Delarue, Francois
    Rhodes, Remi
    ASYMPTOTIC ANALYSIS, 2009, 61 (02) : 61 - 90
  • [30] The dual approach to stationary and evolution quasilinear PDEs
    Alessandro Selvitella
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23