Quasilinear PDEs, Interpolation Spaces and Holderian mappings

被引:0
|
作者
Ahmed, I. [1 ]
Fiorenza, A. [2 ,3 ]
Formica, M. R. [4 ]
Gogatishvili, A. [5 ]
El Hamidi, A. [6 ,7 ]
Rakotoson, J. M. [8 ]
机构
[1] Sukkur IBA Univ, Dept Math, Sukkur, Pakistan
[2] Univ Napoli Federico II, Via Monteoliveto 3, I-80134 Naples, Italy
[3] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[4] Univ Napoli Parthenope, Via Generale Parisi 13, I-80132 Naples, Italy
[5] Czech Acad Sci, Inst Math, Prague 11567 1, Czech Republic
[6] Univ Rochelle, Dept Math, Ave Michel Crepeau 17042, La Rochelle, France
[7] Univ Rochelle, Lab LaSIE, Ave Michel Crepeau 17042, La Rochelle, France
[8] Univ Poitiers, Lab Math & Applicat, 11 Bd Marie & Pierre Curie,Teleport 2, F-86073 Poitiers 9, France
基金
美国国家科学基金会;
关键词
interpolation; Holderian operator; quasilinear equation; regularity; anisotropic-variable exponent; NONLINEAR ELLIPTIC-EQUATIONS; RENORMALIZED SOLUTIONS; REAL INTERPOLATION; SOBOLEV SPACES; T-SET; EXISTENCE; UNIQUENESS; GRADIENT; COMPACTNESS; THEOREMS;
D O I
10.1007/s10476-023-0245-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of alpha-Holderian mappings between normed spaces, by studying the action of the mappings on K-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form - div((a) over cap(del u)) + V (u) = f, where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz-Zygmund spaces. We show several results; for instance, that the mapping T : T f = del u is locally or globally alpha-H<spacing diaeresis>olderian under suitable values of a and appropriate hypotheses on V and (a) over cap.
引用
收藏
页码:895 / 950
页数:56
相关论文
共 50 条