Quasilinear evolutionary equations and continuous interpolation spaces

被引:60
|
作者
Clément, P
Londen, SO [1 ]
Simonett, G
机构
[1] Aalto Univ, Inst Math, FIN-02150 Espoo, Finland
[2] Delft Univ Technol, Dept Math & Informat, NL-2600 GA Delft, Netherlands
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
abstract parabolic equations; continuous interpolation spaces; quasilinear evolutionary equations; maximal regularity;
D O I
10.1016/j.jde.2003.07.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze the abstract parabolic evolutionary equations D-t(alpha)(u - x) + A(u)u =f (u) + h(t), u(0) = x, in continuous interpolation spaces allowing a singularity as tdown arrow0. Here D-t(alpha) denotes the time-derivative of order alpha is an element of (0, 2). We first give a treatment of fractional derivatives in the spaces L-p((0, T); X) and then consider these derivatives in spaces of continuous functions having (at most) a prescribed singularity as tdown arrow0. The corresponding trace spaces are characterized and the dependence on alpha is demonstrated. Via maximal regularity results on the linear equation D-t(alpha)(u - x) + Au =f, u(0) = x, we arrive at results on existence, uniqueness and continuation on the quasilinear equation. Finally, an example is presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 447
页数:30
相关论文
共 50 条
  • [1] Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations
    Clément P.
    Simonett G.
    Journal of Evolution Equations, 2001, 1 (1) : 39 - 67
  • [2] On the principle of linearized stability in interpolation spaces for quasilinear evolution equations
    Bogdan-Vasile Matioc
    Christoph Walker
    Monatshefte für Mathematik, 2020, 191 : 615 - 634
  • [3] On the principle of linearized stability in interpolation spaces for quasilinear evolution equations
    Matioc, Bogdan-Vasile
    Walker, Christoph
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (03): : 615 - 634
  • [4] Quasilinear PDEs, Interpolation Spaces and Holderian mappings
    Ahmed, I.
    Fiorenza, A.
    Formica, M. R.
    Gogatishvili, A.
    El Hamidi, A.
    Rakotoson, J. M.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 895 - 950
  • [5] On quasilinear parabolic equations in the Orlicz spaces
    Fang, Fei
    Ji, Chao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 307 - 318
  • [6] Quasilinear PDEs, Interpolation Spaces and Hölderian mappings
    I. Ahmed
    A. Fiorenza
    M. R. Formica
    A. Gogatishvili
    A. El Hamidi
    J. M. Rakotoson
    Analysis Mathematica, 2023, 49 : 895 - 950
  • [7] Quasilinear degenerate evolution equations in Banach spaces
    Favini, A
    Yagi, A
    JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (03) : 421 - 449
  • [8] QUASILINEAR NONLOCAL INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
    Dong, Qixiang
    Li, Gang
    Zhang, Jin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [9] Quasilinear degenerate evolution equations in Banach spaces
    Angelo Favini
    Atsushi Yagi
    Journal of Evolution Equations, 2004, 4 : 421 - 449
  • [10] CONTINUOUS INTERPOLATION SPACES AND SPATIAL REGULARITY IN NON-LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS
    SINESTRARI, E
    JOURNAL OF INTEGRAL EQUATIONS, 1983, 5 (04): : 287 - 308