An averaging theorem for quasilinear Hamiltonian PDEs

被引:10
|
作者
Bambusi, D [1 ]
机构
[1] Univ Milan, Dipartmento Matemat, I-20133 Milan, Italy
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 04期
关键词
D O I
10.1007/s00023-003-0144-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of Hamiltonian quasilinear PDEs close to elliptic equilibria. Under a suitable nonresonance condition we prove an averaging theorem according to which any solution corresponding to smooth initial data with small amplitude remains very close to a torus up to long times. An application to quasilinear wave equations in an n-dimensional paralleliped is given.
引用
收藏
页码:685 / 712
页数:28
相关论文
共 50 条
  • [41] ABSTRACT AVERAGING THEOREM
    KURTZ, TG
    JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 23 (02) : 135 - 144
  • [42] THE OBSTACLE PROBLEM FOR QUASILINEAR STOCHASTIC PDES: ANALYTICAL APPROACH
    Denis, Laurent
    Matoussi, Anis
    Zhang, Jing
    ANNALS OF PROBABILITY, 2014, 42 (03): : 865 - 905
  • [43] The obstacle problem for quasilinear stochastic PDEs with degenerate operator
    Yang, Xue
    Zhang, Jing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3055 - 3079
  • [44] Quasilinear Stochastic PDEs with two obstacles: Probabilistic approach
    Denis, Laurent
    Matoussi, Anis
    Zhang, Jing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 133 : 1 - 40
  • [45] CONTROLLABILITY UNDER POSITIVE CONSTRAINTS FOR QUASILINEAR PARABOLIC PDES
    Nunez-Chavez, Miguel R.
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, : 327 - 341
  • [46] Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients
    Delarue, F
    ANNALS OF PROBABILITY, 2004, 32 (3B): : 2305 - 2361
  • [47] Quasilinear PDEs, Interpolation Spaces and Hölderian mappings
    I. Ahmed
    A. Fiorenza
    M. R. Formica
    A. Gogatishvili
    A. El Hamidi
    J. M. Rakotoson
    Analysis Mathematica, 2023, 49 : 895 - 950
  • [48] Compensation of actuator dynamics governed by quasilinear hyperbolic PDEs
    Bekiaris-Liberis, Nikolaos
    Krstic, Miroslav
    AUTOMATICA, 2018, 92 : 29 - 40
  • [49] Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs
    Delarue, Francois
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) : 924 - 951
  • [50] An existence theorem for quasilinear systems
    Wang, HY
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 : 505 - 511