Hitting properties and non-uniqueness for SDEs driven by stable processes

被引:4
|
作者
Berestycki, J. [1 ]
Doering, L. [1 ]
Mytnik, L. [2 ]
Zambotti, L. [1 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Continuous state branching processes; Immigration; Self-similarity; Jump-diffusion; STOCHASTIC DIFFERENTIAL-EQUATIONS; SIMILAR MARKOV-PROCESSES; PATHWISE UNIQUENESS; RECURRENT EXTENSIONS; LEVY PROCESSES;
D O I
10.1016/j.spa.2014.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a class of self-similar jump type SDEs driven by Holder continuous drift and noise coefficients. Using the Lamperti transformation for positive self-similar Markov processes we obtain a necessary and sufficient condition for almost sure extinction in finite time. We then show that in some cases pathwise uniqueness holds in a restricted sense, namely among solutions spending a Lebesgue-negligible amount of time at 0. A direct power transformation plays a key role. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:918 / 940
页数:23
相关论文
共 50 条
  • [41] Uniqueness and non-uniqueness in acoustic tomography of moving fluid
    Agaltsov, Alexey D.
    Novikov, Roman G.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (03): : 333 - 340
  • [42] Ergodicity of supercritical SDEs driven by α-stable processes and heavy-tailed sampling
    Zhang, Xiaolong
    Zhang, Xicheng
    BERNOULLI, 2023, 29 (03) : 1933 - 1958
  • [43] Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances
    Jinying Tong
    Xinghu Jin
    Zhenzhong Zhang
    Potential Analysis, 2018, 49 : 503 - 526
  • [44] Exponential Ergodicity for SDEs Driven by -Stable Processes with Markovian Switching in Wasserstein Distances
    Tong, Jinying
    Jin, Xinghu
    Zhang, Zhenzhong
    POTENTIAL ANALYSIS, 2018, 49 (04) : 503 - 526
  • [45] Transition density estimates for diagonal systems of SDEs driven by cylindrical α-stable processes
    Kulczycki, Tadeusz
    Ryznar, Michal
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1335 - 1375
  • [46] NON-UNIQUENESS IN PLANE FLUID FLOWS
    Gimperlein, Heiko
    Grinfeld, Michael
    Knops, Robin J.
    Slemrod, Marshall
    QUARTERLY OF APPLIED MATHEMATICS, 2024, 82 (03) : 535 - 561
  • [47] EXAMPLES OF THE NON-UNIQUENESS OF EQUATIONS USED TO DESCRIBE THE KINETICS OF INTESTINAL TRANSPORT PROCESSES
    GARDNER, MLG
    GASTROENTEROLOGIE CLINIQUE ET BIOLOGIQUE, 1983, 7 (05): : 501 - 501
  • [48] Non-uniqueness in G-measures
    Dooley, A. H.
    Rudolph, Daniel J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 575 - 586
  • [49] Non-uniqueness in a free boundary problem
    Bennewitz, Bjoern
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (02) : 567 - 595
  • [50] On the non-uniqueness of the electromagnetic instantaneous response
    Gustafsson, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (06): : 1743 - 1758