Hitting properties and non-uniqueness for SDEs driven by stable processes

被引:4
|
作者
Berestycki, J. [1 ]
Doering, L. [1 ]
Mytnik, L. [2 ]
Zambotti, L. [1 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Continuous state branching processes; Immigration; Self-similarity; Jump-diffusion; STOCHASTIC DIFFERENTIAL-EQUATIONS; SIMILAR MARKOV-PROCESSES; PATHWISE UNIQUENESS; RECURRENT EXTENSIONS; LEVY PROCESSES;
D O I
10.1016/j.spa.2014.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a class of self-similar jump type SDEs driven by Holder continuous drift and noise coefficients. Using the Lamperti transformation for positive self-similar Markov processes we obtain a necessary and sufficient condition for almost sure extinction in finite time. We then show that in some cases pathwise uniqueness holds in a restricted sense, namely among solutions spending a Lebesgue-negligible amount of time at 0. A direct power transformation plays a key role. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:918 / 940
页数:23
相关论文
共 50 条
  • [31] NON-UNIQUENESS OF PHONOLOGICAL REPRESENTATIONS
    SCHANE, SA
    LANGUAGE, 1968, 44 (04) : 709 - 716
  • [32] Non-uniqueness of atmospheric modeling
    Judge, PG
    McIntosh, SW
    SOLAR PHYSICS, 1999, 190 (1-2) : 331 - 350
  • [33] Non-uniqueness of the first passage time density of Levy random processes
    Sokolov, IM
    Metzler, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (46): : L609 - L615
  • [34] Multilevel Monte Carlo Implementation for SDEs Driven by Truncated Stable Processes
    Dereich, Steffen
    Li, Sangmeng
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 3 - 27
  • [35] Exponential ergodicity and strong ergodicity for SDEs driven by symmetric α-stable processes
    Wang, Jian
    APPLIED MATHEMATICS LETTERS, 2013, 26 (06) : 654 - 658
  • [36] Non-uniqueness and instability of 'ankylography'
    Wang, Ge
    Yu, Hengyong
    Cong, Wenxiang
    Katsevich, Alexander
    NATURE, 2011, 480 (7375) : E2 - E3
  • [37] Complexity, Networks, and Non-Uniqueness
    Alan Baker
    Foundations of Science, 2013, 18 : 687 - 705
  • [38] Non-uniqueness and instability of ‘ankylography’
    Ge Wang
    Hengyong Yu
    Wenxiang Cong
    Alexander Katsevich
    Nature, 2011, 480 : E2 - E3
  • [39] NON-UNIQUENESS IN ELASTOPLASTIC ANALYSIS
    TINLOI, F
    WONG, MB
    MECHANICS OF STRUCTURES AND MACHINES, 1989, 16 (04): : 423 - 437
  • [40] Uniqueness and non-uniqueness in the non-axisymmetric direction problem
    Kaiser, R.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (03): : 347 - 360