Hitting properties and non-uniqueness for SDEs driven by stable processes

被引:4
|
作者
Berestycki, J. [1 ]
Doering, L. [1 ]
Mytnik, L. [2 ]
Zambotti, L. [1 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Continuous state branching processes; Immigration; Self-similarity; Jump-diffusion; STOCHASTIC DIFFERENTIAL-EQUATIONS; SIMILAR MARKOV-PROCESSES; PATHWISE UNIQUENESS; RECURRENT EXTENSIONS; LEVY PROCESSES;
D O I
10.1016/j.spa.2014.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a class of self-similar jump type SDEs driven by Holder continuous drift and noise coefficients. Using the Lamperti transformation for positive self-similar Markov processes we obtain a necessary and sufficient condition for almost sure extinction in finite time. We then show that in some cases pathwise uniqueness holds in a restricted sense, namely among solutions spending a Lebesgue-negligible amount of time at 0. A direct power transformation plays a key role. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:918 / 940
页数:23
相关论文
共 50 条
  • [21] On a non-uniqueness in fragmentation models
    Banasiak, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (07) : 541 - 556
  • [22] UNIQUENESS AND NON-UNIQUENESS IN INVERSE RADIATIVE TRANSFER
    Stefanov, Plamen
    Tamasan, Alexandru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) : 2335 - 2344
  • [23] NON-UNIQUENESS OF ORDER OF SATURATION
    KUTTNER, B
    SAHNEY, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1978, 84 (JUL) : 113 - 116
  • [24] NON-UNIQUENESS OF OPTION PRICES
    GERBER, HU
    SHIU, ESW
    INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (01): : 67 - 69
  • [25] ON THE NON-UNIQUENESS OF THE REFRACTION SOLUTION
    Gureli, Orhan
    Kayiran, Turan
    JOURNAL OF SEISMIC EXPLORATION, 2018, 27 (01): : 1 - 27
  • [26] Non-Uniqueness of Atmospheric Modeling
    Philip G. Judge
    Scott W. McIntosh
    Solar Physics, 1999, 190 : 331 - 350
  • [27] THE NON-UNIQUENESS OF LINGUISTIC INTUITIONS
    CARROLL, JM
    BEVER, TG
    POLLACK, CR
    LANGUAGE, 1981, 57 (02) : 368 - 383
  • [28] Derivative formulae for SDEs driven by multiplicative α-stable-like processes
    Wang, Linlin
    Xie, Longjie
    Zhang, Xicheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (03) : 867 - 885
  • [29] Ergodicity of CIR type SDEs driven by stable processes with random switching
    Zhang, Zhenzhong
    Cao, Jingwen
    Tong, Jinying
    Zhu, Enwen
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (05) : 761 - 784
  • [30] Complexity, Networks, and Non-Uniqueness
    Baker, Alan
    FOUNDATIONS OF SCIENCE, 2013, 18 (04) : 687 - 705